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INTRODUCTION

Optical methods for signal processing have long been touted as playing an
important role in the future: they will enable complex operations to be performed on
large arrays of data at a very rapid rate. This prediction is based on the inherent
capability of optical systems to operate on two-dimensional (2-D) data planes and on the
ability of spherical lenses to perform the Fourier transform. However. the promise of
optical methods to rapidly perform signal-processing tasks remains unfulfilled, with
certain notable exceptions (e.g., processing synthetic aperture radar and stellar speckle
interferometry data). There are several reasons for this, but the most salient are the
limitations of available 2-D input/output devices (spatial light modulators and detector
arrays), the fact that the optical phase of the processed signal cannot be directly
detected, and the sensitivity of coherent optical systems to mechanical disturbances and
speckle noise.

In contrast to the situation for 2-D optical hardware, signal processor technology
for temporal (1-D) signals is quite advanced in capability and flexibility, and thus
presents the interesting prospect of applying these 1-D devices to 2-D signal processing
if a suitable dimensional transformation can be employed. In effect, this would allow
the rapid parallel processing capability to be “traded off" for more precise. flexible, and
noise-immune 1-D serial processing in a hybrid system. Several dimensional
transformations are available for deriving 1-D signals from 2-D data and reconstructing
processed 2-D outputs, the most familiar being the television raster. But another
algorithm, the Radon transform, has some very nice mathematical properties that make it
an excellent candidate for application to signal processing. These properties were derived
by an Austrian mathematician, Johann Radon, early in this century, and the transform
bearing his name has become well-known in recent years as the mathematical basis for

medical computed tomography. In the Radon transform, 1-D signais are derived from

2-D input data by "projection," i.e., integration along sets of paralle] lines. The 2-D
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signal can be regenerated by "smearing" and summing appropriately filtered 1-D
projections back over the 2-D space. The mathematical properties of the transform
enable 2-D signal-processing operations based on the Fourier transform and/or
convolution operations to be performed by means of 1-D operations on the projections.
Such operations include: generation of compiex Fourier transform, Hartley transform,
Wigner distribution function. general 2-D filtering and correlation, bandwidth

compression, spectrum analysis, and cepstrum analysis.

THEORETICAL INVESTIGATION OF THE RADON TRANSFORM

APPLIED TO SIGNAL PROCESSING

In his original development of the mathematical theory of the transform, Johann
Radon proved two theorems that have been the basis for application of the Radon
transform to signal processing: the central-slice (or projection-slice) theorem and the
filter theorem. They demonstrate that 2-D Fourier transforms and convolutions can be
performed by 1-D operations on the projection data. To illustrate mathematically, a
projection of a 2-D function f(r) is commonly defined by a linear space-variant integral

transformation:

R (f(r}] = A¢(p.9g) = J J d’r f(r) &(p - r-M), 1))

where R; denotes the Radon transform operator. As is customary, we denote scalar
variables and vectors by normal-face and bold-face characters, respectively. The
projection Af is a function of two variables: the radial spatial dimension p and the
azimuth angle ¢. However, all of the operations we consider operate on p alone, and
therefore we can consider the projections Af to be 1-D functions of p parameterized by

the azimuth angle ¢. The central-slice theorem states that the Fourier transform of the

2-D function f(r) is obtained by performing 1-D Fourier transforms of each projection
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and displaying the outputs at the proper radial azimuths:

F2 1O]] p ey = F1 \f(p.#)] = Af(v.9). 2

The geometry of the Radon transform and the central-slice theorem are shown in Figure
1 of Ref. 1. The filter theorem Jemonstrates that the 1-D convolution of the
projections of two functions at the same azimuth is identical to the projection of the

2-D convolution, i.e.,

Ralf(r) == g(r)] = R,If(r)] * R,[g(n)], (3)

where * and ** denote 1-D and 2-D convolution respectively. It is easy to see that
the same result holds for correlation operations as well. The processed 2-D function
may be reconstructed using any of several algorithms to perform the inverse Radon
transform.?

Our analysis of 2-D operations susceptible to solution in Radon space has primarily
exploited these two theorems. We have investigated those useful signal-processing
operations that can be decomposed into a sequence of Fourier transforms, convolutions,
and other achievable 1-D and 2-D operations such as addition, pointwise multiplication,
and taking logarithms. Such operations include Fourier analysis (computation of both
the power spectrum and complex transform), the Hartley transform, image filtering and
correlation, bandwidth compression, generation of the Woodward ambiguity function and
the Wigner distribution function, some spectrum estimation algorithms (periodograms,
Blackman-Tukey analysis, and Yule-Walker autoregressive models}. and the cepstrum.

Work by other authors has established® that the Radon transform can be uscful for

pattern recognition through calculation of image moments and the Hough transform.
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CONSTRUCTION OF A PRACTICAL SYSTEM FOR 2-D SPECTRAL

o ANALYSIS AND IMAGE FILTERING

The hybrid system constructed to perform signal processing in Radon space consists

of an optical scanner (to generate the Radon transform data), 1-D signal processors, and

g a computer-controlled CRT display. The optical Radon transformer uses a laser source,
a Bragg-cell scanner, and anamorphic optics to project a line-of-light onto a 2-D
reflective or transmissive object. By collecting the light reflected or transmitted by the

i object onto a detector, a signal proportional to the line integral of the reflectance or
transmittance is generated. The line-of-light is scanned parallel to itself by the Bragg
cell to produce a temporal signal proportional to the line-integral projection for one

|

azimuth angle. After one projection is generated, the azimuth angle is changed by an
image-rotating prism. Thus, the Radon projections are generated as a sequence of
temporal electronic signals. For obvious reasons, the optical Radon transformer is called
a flying-line scanner, and is shown schematicaily in Figure 2 of Ref. 1. Though we
had originally planned to demonstrate Radon transformation at video rates (30 frames/s),
we are limited by the rotation rate of the stepper motor for the image rotator to about §
frames/s. This is by no means a fundamental limit for signal processing in Radon
space--optical systems have been built to rotate images at 75 frames/s with excellent
stability and image quality.

After derivation of the projection data. signal processing can be performed by [-D
electronic or hybrid devices. For the demonstration of 2-D spectrum analysis and
Fourier transformation. we implemented the chirp transform algorithm with surface
acoustic wave dispersive filters to produce the 1-D transform of the temporal input data

within 30 us. The time-bandwidth product of the Fourier transformer is only 50. but

again this is by no means a fundamental limitation. Filtering of the 1-D signals was

performed by applying the projection signal to one port of a monolithic SAW convoiver.



A fast ECL function generator was constructed to store the filter function to be applied
to the other port of the SAW convolver.

To construct the 2-D Fourier transform signal, the 1-D processed signal was
displayed in the proper polar format on a computer-controlled CRT. The results
obtained with the system are available in Ref. 4, which is available in the Appendix.

It had been our intention to design and construct a custom SAW filter to perform
the filtering operation for image reconstruction from projections. However, the
capabilities of the available photolithographic facilities were not adequate for the task,
and instead we utilized the SAW convolver for the filtering operation. The ECL
function generator was built to store the filter function. Recognizable reconstructions
were derived of input scenes at approximately S frames/s, but were not of useful quality
for two reasons. The signal-to-noise ratio of the output from the SAW convolver was
not adequate, and the original image rotator used to perform the inverse Radon

transform exhibited too much runout. The results obtained are to be published shortly.

PROOF-OF-PRINCIPLE EXPERIMENTS FOR

OTHER PROCESSING OPERATIONS

Both computer simulations and demonstrations in hardware were performed for a
number of the 2-D processing operations listed above, including Fourier spectrum
analysis, complex Fourier transformation, the Hartley transform. data compression.
generation of the Wigner distribution function, power spectrum estimation®
(periodograms, the Blackman-Tukey algorithm, and the Yule-Walker autoregressive
model), and the cepstrum. Most of these results have been reported either in the open

1 2 4 6 7 8
e e

literature - or by presentation at technical meetings. Papers dealing with the

remaining operations are in preparation.
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FEASIBILITY OF USING THE RADON TRANSFORM

FOR 3-D DATA PROCESSING

An architecture for a 3-D image processor was developed prior to the
commencement of the contract period, and so the work in this program concentrated on
investigation of materials for rapid storage and retrieval of the data arrays. The
proposed technique utilizes wavelength-multiplexed storage in alkali-halide crystals. A
theoretical examination of data-storage mechanisms in the crystals was made to describe
the conditions for a linear relationship between exposure intensity (or exposure time)
and hole depth. The two data-storage mechanisms are photochemical holeburning (PHB)
and nonphotochemical holeburning (NPHB). It was discovered that PHB materials do
exhibit the necessary linear relationship, but NPHB ma.:rials do not. The results were

reported in Ref. 9.
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Application of the Radon transform to optical production of the !
Wigner distribution function 3

L \
Roger L. Easton, Jr. Abstract. The Wigner distribution function (WDF), a simuitaneous coordinate )
Anthony J. Ticknor and frequency representation of a signal, has properties useful in pattern
Harrison H. Barrett recognition. Because the WDF is computationally demanding, its use is not «

Optical Sciences Center usually appropriate in digital processing. Optical schemes have been developed

@ University of Arizona to compute the WDF for one-dimensional (1-D) signals, often using acousto-
Tucson, Arizona 85721 optic signal transducers. Some recent work has demonstrated the computation

of two-dimensional (2-D) slices of the four-dimensional (4-D) WDF of a 2-D

input transparency. In this latter case, the required 2-D Fourier transformation

is performed by coherent optics. We demonstrate that computation of the WDF -,

of real 2-D signals is susceptible to Radon transform solution. The 2-D opera- X

tion is reduced to a series of 1-D operations on the line-integral projections. The £
) required projection data are produced optically, and the Fourier transformation g

is performed by efficient 1-D processors (surface acoustic wave filters) by

means of the chirp-transform algorithm. The resultant output gives 1-D slices i
through the 4-D WDF nearly in real time, and the computation is not restricted .

to coherently illuminated transparencies. This approach may be useful in dis- g

tinguishing patterns with known texture direction. The optical setup is easily . .
modified to produce the cross-Wigner distribution function, a special case of the N
v complex, or windowed, spectrogram,

Keywords: optical pattern recognition; optical data processing Wigner distribution func-
tion; Radon transform; surface acoustic wave signal processing.

Optical Engineering 23(6), 738-744 (November/Decernber 1984).
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¢ |- INTRODUCTION —o - .
The Wigner distribution function (WDF) was introduced in 1932 asa 2) _
phase space representation in quantum mechanics.! Because it de- 2y -
scribes a signal simultaneously in Fourier reciprocal variables, it has X eTemuwrgie -
potential applications in the recognition of nonstationary pat- -
terns.2-3 The WDF of a 1-D input function of f(x) is a 2-D function -
and is commonly defined as where ry and ¢’ are 2-D coordinate vectors and u is a 2-D spauial "
» frequency vector. If W(xg,u) is evaluated at zero frequency and a H
o change of variables is performed, the WDF becomes an autocon- ,
x’ X’ . volution. Thus, the WDF may be interpreted as a generalized auto- <
= —_— - = le—imux’ gy’ - , .
Wi(xg.u) / f("o *+3 )f'(xo 3 )‘ dx convolution at nonzero frequency * .
—a0 Several authors®~’ have reviewed the properties of the WDF,
mk 107 recerved March 2. 1984: revised ved March 28 including some aspects that make it suitable for implementation by R
nw - &rc . , reve man el N . H H .
1984; neeepp:ed for pubhication June 24, 1984; received by Mm“:::r:nztir;cuor Sept.‘dr.cl*)u. optical processing. Most importantly. the WDF of any real or com- -
@  © 1984 Society of Photo-Optxcal Instrumentation Engineers. plex function is real (though not always positive), since it 13 the d
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APPLICATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION

Fourier transform of f{xy + (x’/2)1f*[x — (x’/2)], which is Hermi-
tian with respect to x’. In addition, the region of support of W¢(x4,u)
is identical to that of f(x) in both the coordinate and frequency
domains.

In computing the WDF, the major bottleneck is the Fourier
transformation. In the case of a 1-D (2-D) input signal, a full 1-D
(2-D) Fourier transform must be performed for each value of the 1-D
(2-D) coordinate. Were this to be done digitally in the case of a 1-D
discrete signal of n sampies, it would require n multiplications to
produce the product function. A total of nlog,n multiplications is
needed to compute the subsequent fast Fourier transform, giving a
total of n + nlog,n multiplications per point. This sequence must be
evaluated at each sample in the sequence [corresponding to each
value of x in Eq. ()], giving a total of n{n + nlog,n] = n?log,n
multiplications to compute a2 1-D discrete WDF. For a 2-D nXn
array, similar reasoning demonstrates that a total of n?(n? + n?log,n?]
= Zn‘logzn multiplications is required. The motivation to find opti-
cal processing algorithms is quite apparent, especially in the applica-
tion of feature detection or recognition. due to the large quantity of
output data.

Several schemes have been developed to generate the 2-D WDF
of 1-D signals.”=® Recent work by Bamler and Glinder'® has demon-
strated computation of 2-D slices of the 4-D WDF of a real-valued
2-D input transparency. The product function was produced opti-
cally by an autocollimating telescope, and the Fourier transforma-
tion was performed by a lens. By scanning over the coordinates of the
input transparency, all 2-D slices of the complete 4-D WDF can be
found.

Computation of Fourier transforms is also susceptible to solution
by the Rador transform.!!' !4 Data of dimension m, where m=22, are
reduced to 1-D by integration over m — | dimensions. A 1-D Fou-
rier transform of the projection data yields one line through the
origin of the m-D Fourier transform. Varying the projection angle
allows building up the complete Fourier transform. This procedure is
casily adapted to computation of the WDF and offers advantages in
certain applications.

2. RADON TRANSFORM

The Radon transform has received much attention in the scientific
community since the invention of x-ray computed tomography (CT)
in the 1960s. It has been used in the fields of astronomy, geology, and
nuclear magnetic reasonance.!! Recently, it has been adapted to
feature extraction in optical data processing.'* In 1917 Johann
Radon published!® the mathematics of the transform, in which he
proved that a 2-D mathematical function can be reconstructed from
the complete set of its line-integral projections. The basic mathemat-
ical analysis of the Radon transform is straightforward and has been
considered by several authors,!! 12 so0 we shall only touch briefly on
the main points relevant to 2-D Fourier analysis.

The 1-D line-integral projection A(p.¢) of a 2-D function f(r)
along azimuth direction ¢ (relative to the x-axis) is defined as

- -] - -]
_Ap.@) = / / d?rf(r)8(p — r-d) . 3

—00 -—-go0

The projection A may be regarded as a 1-D function of p, param-
etrized by &. The 1-D delta function in the integrand reduces the area
integral to a line integral along a line normal to n and at a distance p
from the origin (Fig. 1). The set [A(p,)] for all azimuth angles ¢
constitutes the Radon transform of f(r). As will be demonstrated, the
WDF of a 2-D function f(x) may be computed by performing opera-
tions on the line-integral projections of an easily derived 2-D func-
tion, reducing the 2-D computation of the Fourier transforms for
each value of the coordinate vector x to a series of |-D operations.
This can be seen if a |-D Fourier transform of a line-integral

projection is performed:

o 39
-

A(p, ¢)

Aly, ¢)

Fig. 1. Geometry of the Radon transform. (Top) Derivation of one projec-
tion A(p.4) by line-integral projection. Line integrais are evaiuated along the
azimuth direction (¢ + (#/ 2)] to vieid the projection along azimuth direction
(#). The unit vector A defines the szimuth (¢). (Bottom) Central-slice theo-
rem: the 1-D Fourier transform of a line-integral projection vields one line
through the 2-D Fourier transtorm of the original 2-D tunction.

o2, [AP.®)] = A(v.0)]

a0 E -] 0
= / dp e~2mvp / / d*r f(né(p — rh)
-0 -—00 Q0
an - -]
= / / erf(r)e-Zniﬂu-r
—0 —00
= F(p)p= a 4)
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where lowercase letters denote functions in coordinate space and
uppercase letters denote the Fourier transforms, and p is the 2-D
spatial frequency vector. This resuit shows that the [-D Fourier
transform of the line-integral projection A(p,®) of the 2-D function
f(r) yieids one line through the origin of the 2-D Fourier transform of
f(r) (Fig. 1). This is the central-slice or projection-slice theorem. The
advantage of using the Radon transform approach to 2-D Fourier
transformation results from the ability to do the Fourier transforma-
tion in one dimension once the projections are available. There are
several efficient 1-D processors available to perform the Fourier
transformation, including acousto-optic cells, charge-coupled device
(CCD) transversal filters, and surface acoustic wave (SAW) disper-
sive delay lines. The system constructed uses SAW delay lines in the
chirp-transform algorithm, as will be discussed shortly.

3. FLYING LINE SCANNER

To use the Radon transform to compute Fourier transforms, it is first
necessary to produce the line-integral projection of the 2-D function.
This is easily done optically using a device we call a flying line scanner
(Fig. 2.), which projects a line of light onto the input transparency.
The azimuth of the line of light can be selected by an image rotator,
¢.g.. a dove prism. The light transmitted through the *-ansparency is
proportional to the line integral of the intensity transmission along
that line. An acousto-optic scanner allows the line of light to be swept
perpendicular to itself [i.c., varying p in A(p,®), Eq. (3)]. The light
transmitted is collected by the photomultiplier tube (PMT), whose
output current in time is proportional to A(p,#). Rotation of the
dove prism varies the angle ¢ and allows the entire set [ A(p,#)] to be
collected.

4. SAW CHIRP FOURIER TRANSFORM

The SAW filter is an acoustoelectric device that can be designed to
have one of a wide variety of impuise responses. It consists of a
piezoelectric crystal substrate upon which is deposited a pair of
conductive interdigital transducers (Fig. 3). A rf signal applied to one
transducer produces a rf field between the fingers of the transducer.
This field distorts the crystal piezoelectricaily, and these displace-
ments travel along the crystal surface at the sound velocity. When the
acoustic wave reaches the second transducer, an electric field is
piezoelectrically induced in the conductor. The resuiting electric
signal is the convolution of the input signal and the filter's impuise
response. By appropriate design of the interdigital transducers, the
desired response may be obtained.!’

To perform Fourier transformation, three filters with linear FM
impulse responses are required for the chirp-transform algorithm.
The impuise response of a linear FM filter is

h(t) = eilmtatt = gagt oXiat? 5

where «y, is the frequency at t = 0 and a is the “chirp rate.”
If we ignore the constant frequency wy, a signal f;(t) applied to a
filter of impulse response h(t) = e*'at will produce an output signal

fo(1):

f,() = f(1) *elat

/ dr f(r) datt = (6)

-0

where ® denotes convolution. Expanding the exponential factor, we

740 / OPTICAL ENGINEERING / November/December 1984 / Vol. 23 No. 6

ZERO-ORDER
BLOCKING FILTER

BRAGG CELL
SCANNER~___

IMAGE
INPUT ROTATOR
PLANE
MT
f(r)
Ap, ¢)

Fig. 2. Flying line scanner. Collimated He-Ne laser light is focused onto the
Bragg cell by a cylindrical lens. The zero-order diffraction is blocked by the
fitter, and the first-order besm passes through to the image rotator. The
relay optics images the line of light onto the transparency f{ 7). Application
of & lineer FM signal to the Bragg cell scans the line of light across the
transperency. The transmitted light is collected by the photomultiplier tube.
For a particular azimuth angie ¢ selected by the image rotator, the PMT
output signal in time is proportional to the line-integral projection A(p.4é).

INPUT TRANSOUCER

TRAVELING SURFACE WAVE

PIEZOELECTRIC SUBSTRATE

QUTPUT TRANSDUCER —

Fig. 3. Layout of a simpie surface acoustic wave filter. An impulse ap-
plied to one transducer produces s traveling acoustic wave on the surfsce
of the piszoelectric substrate. The frequency of the wave is determined by
the spacing of the fingers in the interdigital transducer and the smplitude
by the amount of finger overiap. The scoustic wave is sampied by the
output transducer. The overall filter impuise response is the convolution
of the responses of the two transducers. For linear chirp filters, the
response to an impulsive input is a signal varying linearly in frequency
over time.

obtain

fo(t) = eiatz / dr E.l( ) C“"J] e—liaﬂ . (7)
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APPLICATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION
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Fig. 4. Fourier spectrum analysis by meens of the Radon transform. The
line of light produced by the flying line scanner (Fig. 2) passes through the .
input transperency f(x.y) = #{T). The light collected by the PMT pro- N
duces a time signal proportional to the line-integrai projection A(t.¢). This »
signal is multiplied by an upchirp [ht) = e*ist?] and convoived with & -
downchirp [h(t) = ¢ 1. The is demodulated, giving a signai .
proportionsl to the megnitude of the 1-D Fourier transform of A(t.¢). This 3
is dispiayed on a CRT and integrated on the output plane (photographic .
film) to give the 2-D Fourier power spectrum. -
>
Identifying t as v/ a produces the equation -
oy
) 3
e
” s 02 . 1'2 . S )
folt) = f, (— v) = elat [fi(r) cla ]e—z’"”dr -
a
- .
= ¢at® 7 [fi(t) ei'“’] : ®) ~
v Fig. 5. Spectrum analysis by means of the Radon transform. (a) Input
function. (b) Output obtained from apparatus of Fig. 4. The fundamentai 3
The Fourier transform is thus obtained in three steps: spatial frequencies of the fine gratings and three orders from the coarse
grating are visible.
(1) fi(t) is multiplied by e—iat? (premultiplication).
(2) This product is convolved with a filter of impulse response eiat’, L o
(3) The resultant is multiplied by e—iat? (postmultiplication). line-integral projection data requires 10 us, and the transform data
are read out less than 20 us later, so it is feasible to perform the full
2-D spectrum analysis at video rates if the image rotation rate is 900
If only the modulus is required, the postmultiplication can be rpm, requiring a prism rotation rate of 450 rpm.
deleted. Of course, in actuality, the filters have finite time windows of
width T, which affect the limits on the integrals in Eqgs. (6) through 5. RADON IMPLEMENTATION OF THE 4-D WDF O
(8), and overall have the effect of convolving the result with a . . "
sinc(t/ T) function. In practice, the premultiply and postmultiply ;I;ofcomp:te 12:4'DfWD.F ofa2-D rc’z/;lzfuncnoS l(':),‘zn s necessary X
chirps are produced by applying an impulse input at the appropriate orm the product function tfry + (r'/2)] t[ry — (r''2)] = m(ry.r) :
time to SAW filters whose impulse response is the appropriate chirp. for all values of r and then_Founcr traqsfo_rm overr. Wc can apply .
A Fourier transformer with this algorithm was constructed using the Radon transform to this computation in the following manner. '
dispersive filters from Andersen Labs (models DS-120-10-20-251A First, we take line-integral projections of the product function
and -251B). The time dispersion of both models is 20 us, and the 3
bandwidth is 10 MHz. The chirp slopes of the two models are of ‘.
opposite sign. The time-bandwidth product of the system (and hence - 2 . . .
the number of resolvablie spots in the transform) is only 50, but with Ap.fo.) dr'mi(ro,F)8(p — ¢A) . 9) b
more sophisticated filters the time-bandwidth product could be -
boosted to 2000 or more, if required. Y
A 2-D Fourier spectrum analyzer was constructed using the flying The geometry of the projection is shown in Fig. 6. Taking the 1-D
line scanner to produce the projection and the SAW filters to take the Fourier transform of A(p.ry.@) yields [by the central-slice theorem, v
transform (Fig. 4.). The transformed signal is demodulated and Eq. (4)] one line through the 2-D siice of the W DF evaluated at ry. By
applied to the z-axis of a CRT. For each projection, this gives one rotating the azimuth ¢, we can build up the 2-Dsslice in exact analogy A
line through the 2-D Fourier transform. For each new azimuth, a to the 2-D spectrum analyzer. By sampling over the two coordinate '.-:
new line is written on the CR.T and displayed on the output plane at dimensions, the complete 4-D WDF can be computed. The geometry :.
the proper orientation by the image-rotating dove prism. Results of for the Radon transform calculation of one line through the WDF is o
the Fourier anaiysis of a test pattern are shown in Fig. 5. Taking the shown in Fig. 7 [ |
S
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f(r)
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Fig. 8. Line-integral projections of the Wignec distribution function. The
integration

is made overthe linep = ¢ A,

7o

6.

Fig. 7. Orientation of one output line of the WOF. Consider a line-integrai
projection of the product function at an angle ¢ to the x-axis at a point
(»4.0). The line of the WDF so0 obtained is oriented in 4-0 WOF output
space as shown, where the y-coordinate axis has been ignored.

To produce the line-integral projection of the product function,
the technique used by Bamiler and Gliinder'® was adapted as pictured
in Fig. 8. The input transparency is placed in the flying line scanner
with the optic axis passing through the point r of the transparency.
The transmitted light is collected by a lens, focused on a mirror, and
reimaged by the lens back on the transparency. The doubly transmit-
ted light is reflected out of the system by a beam splitter, collected,
and detected by the PMT. The PMT output current is proportional
to the line integral of m(ry,r). As the flying line is scanned across the
transparency, the temporal signal out of the PMT is proportional to
the integral of m(r,r") for different values of r'. The signal is Fourier
transformed, yielding one line through the WDF. Other values of r,
may be interrogated either by moving the transparency relative to the
optic axis or by tilting the mirror. Using a galvanometer scanner,

[ PR

Fig. 8. Hybrid system to generate the WOF of a realinput t{ 7). The line of
light from the flying line scanner passes through the beam splitter onto
the transperency centered at 7, +( r/2). The light transmitted is re-
Wom“m%yﬁnbn&m&mwm.&nism
centered at T, +( /2). The output is refiected by the beam spiitter onto
the PMT. The PMT output is Fourier transformed by the SAW filter as
before and yields one line through the WDF of (7).

mirror tilting may be done quite rapidly. Results are shown in Fig. 9.

This method offers an advantage over that of Bamier and Gliinder
in some applications. Since the Fourier transformation is not optical,
coherent illumination is not required if an appropriate scanning
technique is used.

6. COMPUTATION OF THE CROSS-WIGNER
DISTRIBUTION FUNCTION AND ITS RELATION TO
THE SLIDING-WINDOW SPECTRUM

The sliding-window spectrum of a function f(r) windowed by a
function g(r) is defined as'%:

L -] -]
Stg(r'.uw) = / / f(r + %)g‘(r - {-)e‘“‘“‘" d’r . (10)
—o0 00

From Eq. (2), we can define a cross-Wigner distribution function
(CWDF) to be

ng(r.u) - / / f<r + —;->g‘<r - _;_)c-zﬂiu-r’ dr .

-0 —Q0

n

By changing variables in Eq. (11)to q = r' 2, we obtain

Weg(rw) =2 / / f(r + @g*(r — @ e~ 2MW2Q 4q2  (12)

Assuming a symmetric window function [g(r) = g(—r)] and using
Eq. (10}, we find
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Fig.9 1-D shca through the 4-D WODF of two 2-D objects. In each case, the upper tracs is the ugnol trom the PMT, representing A(p. c) (Eq (5)]. The
lower trace is the output of the chirp Fourier transformer. Since there was no postmuitiply chirp, the magnitude of the transtorm modulates the carrier
frequency. In(a) and (b). the object is a grating of 25% duty cycie (25% opaque, 75% transparent) in a circular aperture. The envelope of the upper trace -s
due to the line-integral projection of the circular aperture. In(a), the gntmg is positioned with the optic axis centered on an opaque grating line [defining 'o
in Eq. (2)]. The components of the product function exactly ‘‘overlay.”” and the WDF at this coordinate is dominated by the fundamentai frequency of the
grating. In (b). the object has bean shifted (varying 'o) 30 that an opaque grating line of one shifted function ""overiays'' the transparent region in the other
shitted function. Hance the WDF is dominated by a frequency twice that of the fundamentai of the grating. In (c) and (d), the objectis a Fresnel zone plate,

and the coordinate displacement is normai to the scanning line. Shifting one zone piate reiative to the other resuits in a linear moire whose spatial frequency

increases linearly with increased shift.

k-

E
/ / fiq + ng*(q — r e72m(ZWa g2
—QQ —a0

Wiglrw

= ZS,B(?.r.Zu) . (13

Thus. by computing the CWDF of a “.nction using a symmetnic
window, we can find a scaled version of the sliding-window spec-
trum. This 1s useful in some pattern-recognition applications where
the local frequency spectrum is of value.'®

Evaluation of the CWDF is also possible using the Radon trans-
form. The setup is shown in Fig. 10. It is similar to the system for
finding the WDF except that the reflecting telescope arrangement
has been replaced with a second lens and transparency to supply the

window function. As before, one line through the spectrum is calcu-
lated at a time. In cases of directional texture. this will result in a
reduced throughput of insignificant data. Results for an Air Force
three-bar chart are shown in Fig. 1.

7. CONCLUSIONS

We have demonstrated a hybnid optical analog electronics processor
that can rapidly compute 1-D lines through the Wigner distribution
function and cross-Wigner distribution function of real-valued 2-D
inputs. In certain pattern-recognition applications, such as recogni-
tion and classification of scenes with directional texture, this tech-
nique offers advantages over digital processors in speed and over
other optical processors in output configuration.
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f(r)

OPTIC AXIS
T
g(r) &%
e rl rl I
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Fig. 10. Setup to compute the cross-Wigner distribution function. The

line of light incident on f{ 7) is reimaged on g{ 7). The total light

incidenton

the PMT is proportional to the line integral of {7, +( 7/2)1a{ T, — ( 7/ 2)).
The Fourier transform with respect to ' gives the CWDF.

REFERENCES

. E. Wigner, Phys. Rev. 40, 749 (1932).
. B. V. K. Kumar and C. Carroll, in /0th /ns. Optical Computing Confer-
ence, S. Horvitz, ed., Proc. SPLE 422, 130 (1983).
H. H. Szu and J. A. Blodgett, AIP Conf. Proc. 65, 355 (1981).
H. H. Szu, Opt. Eng. 21(5). 804 (1982).
.A. M. C. Claasenand W. F. G. Mecklenbrauker, Phillips J. Res. 35,217
1 5
J. Bastiaans, AIP Conf. Proc. 65, 292 (1981).
O. Bartelt, K.-H. Brenner, and A. W. Lohmann, Opt. Commun. 32,

980).
A Qst;nle J. N. Lee, E. Larry Robinson, and H. H. Szu, Opt. Lett. 8,
66 (1983).
.-H. Brenner and A. W. Lohmann, Opt. Commun. 42, 310 (1982).
. Bamier and H. Gllinder, Opt. Acta 30, 1789 (1983).

R. Deans, The Radon Transform and Some of Its Applications, John
iley & Sons, New York (1983).
. H. Barrett, “The Radon Transformand ts Appiications,”in Progress in
tics, Vol. 21, E. Wolf, ed., North-Holland, Amsterdam (1984).
. H. Barreu, in Transformations in Optical Signal Processing, W. T.
Rhodes, J. R. Fienup, B. E. A. Saieh, eds., Proc. SPIE 373, {79 (1984).
R. L. Easton, Jr., H. H. Barrett, and A. J. Ticknor, Proc. of 1983 IEEE
Ull{asonics Symposium, B. R. McAvoy, ed.. p. 85, IEEE, New York
(1983).
. G. R. Gindi and A. F. Gmitro, Opt. Eng. 23(5), 499 (1984).

-

-
=

X

~

-

Vomsmam

g2z

=
&

At -12 U

At -L12 ¥

Fig. 11. 1-D slices of the 4-D CWOF of 2 2-D Air Force three-ber resolu-
tion chart. The window function was a square aperture and was shifted to
examine two areas of the chart.

16. J. Radon. Ber. Sichsische Akademie der Wissenschaften. Leipzig, Math-

Phys. K1.69.262(1917). Translated in S. R. Deans, The Radon Transform
and Some of Iis Applications, John Wiley & Sons, New York (1983).

17. A. A. Oliner, ed., Acoustic Surface Waves, Springer-Verlag, New York

(1978).

8. R. P. Kruger, E. L. Hail, and A. F. Turner, Appl. Opt. i6. 2637 (1977). 2

o e e gy -




TOMOGRAPHIC TRANSFORMATIONS IN OPTICAL SIGNAL PROCESSING

Roger L. Easton, r.
Harrison H. Barrett
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le Introduction and definitions
A. History, deveiopment

8. Basic theory
1. forward Radon transform, projections
2. central=-slice theorem
3. filter theorem
4. inverse Radon transform

C. Application to optical signal processing

1. Optical Radon transformer

2. 1-D processor technologies
a. electronic systems
b. charge-transfer devices
c. acousto-eiectric devices
d. acousto-optics {AQ)

3. Optical Implementation of filtered back-projection

. Applications

A. Operations on 2-D Signals
1. Fourier transformation
a. power spectrum
b. complex transforms
c. Hartley transform
2. filtering and correlation
3. pattern recognition
a. image moments
b. Hough transform
4. image coding and bandwidth compression
5. spectrum estimation
6. linear, space~-variant operations
7. bilinear and nonlinear operations

B. Operations on 3~D signals
1. 3-D spatial and 2-D spatial + 1-D temporal data
2. 2-D spatial + 1-D spectral data

111, Summary and Conclusions
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le Introduction and Definitions

Traditionally, the motivation for processing signals by optical means is due primarily to
two factors. The first is the ability of coherent optical systems using spherical elements to
perform the Fourier transform, while the second is the inherent capability of optical
systems to operate on two-dimensional (2-D) data planes. For 2-D signals (e.g. images),
optical processing is of obvious utility, but even if the signals to be processed are one-
dimensiomal (1-D), optical techniques may allow parallel processing of several channels.
The increased system throughput thus obtained may make optical processing attractive
relative to more precise (but as yet siower) digital electronic technologies.

The main thrust of research in optical signal processing has been directed at applying
either or both of the capabilities of rapid Fourier transformation and parallelisms However,
there are problems restricting the utility of optical processing that are well-known to those
working in the field and which diminish its attractiveness relative to digital electronic
processing. Primary among these are the limitations of available 2-D input/output devices
(spatial light modulators and detector arrays), and (for coherent systems) speckie noise.
These limitations are responsible for restricting the use of optical processing to a few
applications in which they are not significant (e.g. off-line synthetic aperture radar
processing). In marked contrast to the situation for 2-D hardware, signal-processor
technology for temporal (1-D) signals is quite advanced in capability and flexibility, and
hence it may be profitable to apply that 1-D technology to 2-D operations, if possible. In
effect, this would allow a trade-off between rapid parailel processing and precise seriai
processing in a hybrid system. Several algorithms are available to derive 1-0 signais from
a 2-D input and reconstruct the 2-D processed signal. A familiar example of such an
operation is the television raster, which creates a 1-D temporai signal from 2-D imagery by

scanning and rederives the 2-D image by stacking segments of the temporal signal (Rhodes,
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1981b). The raster transduction was used in optical signal processing by Thomas (1966) to
generate a 2.-D array from a long 1-D temporal signal to use as input to a 2-D optical
processor. Several other dimensional transduction operations were considered by Barteit
and Lohmann (1981). One that is becoming more familiar can be cailed a tomographic
transformation, where a 1-D data set is derived from a 2-D signal by integration along sets
of parallel lines. The relation between these two sets of data has some nice mathematical
properties that make the transformation potentially very useful in both analog and digital
signal processing. |
l.A. History and Development

The mathematical basis for the tomographic transformation was derived in 1917 by
Jjohann Radon, an Austrian mathematician. Radon proved that the complete set of 1-D
projections of continuous 2-D or 3-D functions with compact support contain ail of the
information in the original function. The projections are derived by integration of the 2-D
function over sets of parallel lines, or by integration of the 3-D function over parailel
planes. The derivation of the 1-D projections from the function is the forward Radon
transform. Radon aiso derived expressions for reconstruction of the function from its
projections--the inverse Radon transform. GCeneralization of the theory has made it
applicable to functions of higher dimensionality (John, 1955). Another development was
made by Cormack (1963, 1964), who formulated the mathematical expansion of projections
into circular harmonics, i.e. a discrete angular Fourier series representation of the
projection data,

Radon was primarily interested in using projections to find solutions of Poisson’s
differential equation in electrostatics, but his work has been applied to a myriad of
scientific disciplines since the 1950s, inciuding crystallography, radio astronomy, geophysics,

nuclear magnetic resonance, radiative scattering, and diagnostic radiology. This explosion

Ld - » ot ata T -
S N R A .
U W TR SO U0, R, S S

Uy




-4 -
of interest is evident by the number of publications on the subject, especially in the last 15
years or so. For a good discussion of applications and an extensive ' ibliography, see Deans
(1983). No doubt the application of the Radon transform most familiar to the lay public is
in diagnostic radiology. The new fields of x-ray computed tomography (CT), emission
computed tomography (ECT), and magﬁetic resonance imaging (MRI[), which enable imaging
of cross-sectional slices of the body of a patient from sets of projection data, have
received much attention in the popular press. Indeed, the medical application of Radon's
theory is the source of its now familiar name; *tomography’ is derived from the Greek word
for slice. Each of these new medical wonders owes its existence to johann Radon and the
subsequent researchers who generalized and applied the mathematical theory.

In each of the applications listed above, Radon's mathematical theory is used to solve
an inverse probiem, whe.re the source function is mathematically reconstructed from the
projection data. Of course, the complete infinite set of projections is never collected,
making it impossible to uniquely reconstruct the source function; only some *best® estimate
may be found. We shall not overly concern ourselves here with such niceties, as they are
somewhat removed from the purpose at hand and have been considered at length elsewhere
{Rowland, 1979) (Barrett and Swindell, 1981) . Rather, we wish to investigate the use of
the Radon transform as a dimensional transducer in signal processing. The discrete nature
of the data set will still be of some concern to us, mainly due to nonuniform sampling of
Cartesian space by the transformation, but our main purpose is the identification of signal
processing operations that are possible and profitable to perform via a tomographic
transformation. For some of these, the processed 1-D data alone may be sufficient for the
task at hand, but often it will be desirable to reconstruct the processed 2-D signail from the

processed projections and so some consideration will be given to optical methods of

generating the inverse Radon transform.
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i.8. Basic Theory

In the literature, there are several extensive mathematical deveiopments of the theory
of the Radon transform, e.g. Helgason (1980), Deans (1983), and Barrett (1984) .
Consequently, we shall keep our discussion brief and emphasize applicability rather than
completeness or mathematical rigor. Also, we shall generally restrict our treatment to the
2-D problem, with occasional remarks about application to 3-0 when warranted.
l.B.1. Forward Radon Transform, Projections

Given a 2-D function f(r) = f(x,y) (as is common, we shall denote vectors by boldface
characters), a single projection along an azimuth angle ¢ can be derived by integration
along all lines at azimuth ¢ + v/2. The one-dimensional function thus generated has as
independent variable the perpendicular distance of the integration line from the origin.
This distance is the magnitude of the vector p, where p = (p,$) in polar coordinates. It is

also useful to define a unit vector A = T%T = (1,4) = [cos ¢, sin ¢} (n.b. square brackets

denote Cartesian coordinates and parentheses denote polar coordinates). Naturally, for
each set of integration lines at different angles relative to the x-axis, a different
projection is derived. A common notation for a projection is A(p,s), impiying that \ is a
2-D function. But since all operations on the projection will act on the spatial coordinate
p alone, we can consider the projection to be a 1-D function parametrized by the azimuth
angle 9. Depending on one's mathematical preference, A\(p,4) can be defined in a number
of equivalent ways For example, we can consider a projection to be obtained by
integration over lines parallel to the y'~axis in a system of coordinates [x',y'] rotated at
angle ¢ refative to the original (x,y] axes. However, there are distinct advantages
obtained by defining a projection as a 2-D integral transform whose kernel is a 1-D Dirac

deita function which selects the projection azimuth, as shown in Figure 1. Consider a
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projection azimuth 4 defined by the polar unit vector @ = (1,4). We wish to determine the
value of the projection coordinate p that will be influenced by a point in the 2-D function
located at r = (|r|,8) = {r cos 0, r sin 8]. As is apparent from Figure 1, r must be located
on the line normal to A at a perpendicular distan;e from the origin defined by

p=rcos(8-¢)=(rcosocosé+rsindsinéd)sr-°n. (M
Hence, multiplying f(r) by §(p - r * i) collapses the area integral to a set of line integrals
for the azimuth defined by @, giving

rO «
A(p.9) = ' J d*r f(r) 8(p - r * n). (2)

J-wl-»
The transformation has mapped the Cartesian coordinates [x,y] to a new system (p,s),
which is called Radon space. We have a choice about the limits on the new coordinates. If
we consider p to Le bipolar (~= <p< =), then A(p,4) = A(-p,6+7). We may therefore limit
$ to the region (O <% 5_1:). if we require p to be positive, then ¢ runs over 27 radians.
The former choice is usually preferred, since it simplifies the mathematical development. A
plot of the Radon transform in (p,¢) space (Figure 2) is termed a sinogram, sin~e a point in
Cartesian space maps to a sinusoid in Radon space. from eq. (2), it is easy to see that the
Radon transform is linear and space-variant. It is often convenient to express the
projection operation in operator notation, e.g. R,(f(r)] = A(p,$), where the subscript ,
denotes that the function being transformt;.d is two-dimensional.

The projection operation described by eq. (2) can be easily extended to functions of
higher dimensionality (Barrett, 1984). For example, a 1-D projection of a 3-D function can
be obtained by integration over paraliel 2~D pianes. Hence the 1-0 Dirac deita function in
eq. (2) now reduces the volume integral to a planar integral. The transform collapses the

3-0 function f(x,y,z) to a set of 1-D projections (e.g. A(p,$,8) ) parametrized by the two
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angles defining the unit normal to the planes of integration.
1.8.2. Centrai-Slice Theorem

Now that the forward Radon transform has been defined, we need to investigate its
properties that may be useful for signal processing. Foremost of these is the centrai-slice
theorem, which relates tne Fourier transform of a 2-D function to the 1-D Fourier
transforms of its projections. The theorem arises because the kernel of the Radon
transfomn is a Dirac delta function of the scalar product of the conjugate variables r and p,
as the kernel of the Fourier iransform is a function of the scalar product of conjugate
variables r and p. As is customary, we define the Fourier transform of a 2-0 function f(r)

as

;z[f(,”;p(,)=‘f ,[ d¥r f(r) e"2Wi0%r, (3)

] =~ -»

where _?z is the 2-D Fourier transform operator from coordinate r = [x,y] to spatial
frequency p = [£,n]. In this notation, functions denoted by a lower-case character are
the coordinate-space representation (e.g. f(r)), while.the corresponding frequency-space
representation is signified by the upper-case character (e.g. F(p)). f we perform the 1-0

Fourier transform of the projection defined by eq. (2), we obtain

FLiea] 2 A8 = I dp A(p,0) e”27IPY, (4)
J

Substitution of eq. (2) into eq. (4) vields

r'

A(v,9) = [ dp J J dirf(r) S(p-r - ,‘,‘) e-Zﬂip\J. (5)

l -

Exchanging the order of integration, we obtain
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dtr f(r) I dp §(p - r * n) e 2Tipy

..[ [ d?r f(r) a=2wifiver,

—J J (6)
Comparing eq. (6) and eg. (3), we can identify the relation between A(v,$) and F(p):
=F nv).
A(v,d) (p) p=fv = F(nv) (7)

So the 1-D Fourier transform of a Radon projection at azimuth angle ¢ relative to the x-
axis yields one line through the origin of the 2-D Fourier transform of the function f(r).
This line (central slice) in Fourier space is oriented at the sar~2 azimuth angle ¢, but

relative to the g-axis (Figure 1). The central-slice theorem can be represented in operator

notation by:
;2 = }x Rs. (8)

It is important to note that the 2-0 frequency-space representation generated via the
Radon-Fourier transform has a sampling dénsity in Cartesian space that falls off as v !
(Figure 3). This sampling nonuniformity must be compensated whenever a Cartesian-space
representation is derived from a Radon-space representation, e.g. for display of the 2-D
Fourier transform, or (as will be shown) when reconstructing the 2-D source function via
the inverse Radon transform. Also note that the duality of coordinate- and Fourier-space
representations ensures that a duai to the central-siice theorem exists. That is, the inverse
Fourier transform of a projection in Fourier space is a central-slice of the coordinate space
representation of the 2-D function.

A theorem similar in nature to central -siice relates parailel projections weighted by a

phase factor to parallel, rather than meridional, lines of the 2-D Fourier transform (Farhat
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et al., 1983). |f a weighted projection is defined as

q(xn,) = J dy f(x,y) e2¥iNgyY (9)

-

the 1-D Fourier transform of the weighted slice is found to be:

[ dx a(x,n,) e2TIEX o l J dx dy f(x,y) e2¥i(Ex + 1Y)

J - o= )-a
= Q(EM,) . (10)
Systems for optically generating and processing weighted projections have been proposed
(Gmitro et al., 1983), but are substantially more complicated tha_n comparable systems for
central slices.
l.B.3. Filter Theorem
Another very useful attribute of the Radon transform may be derived easily via the
central-slice theorem. Consider the convolution of two 2-D functions f(r) and g(r). Using
operator notation, we can take the 2-D fourier transform of the convolution:
Faaftnranl = Fi (fn1x F o] . (1)
Eg. (11) can be rewritten using the operator notation for the centrai-slice theorem [eq.
(8)], giving:
Falfrgl= FiR (f2 ]
= £ R (1 x FiR (8]
= Filre )] x Fi[hg (P0)] = Af (v,0) X Ag (v.0) (12)
where the subscripts f and g are used to denote which function is being projected at the
common azimuth angle ¢. Applying the inverse 1-D Fourier transform operator to eq. (12)

yields:

ot F iR tF o8l =R, (F* 8] = Ageg
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=j',x-‘ [Af X Ag] =~¥1-1 (Al .fx-l [Ag]
=2¢% g, (13)

where the common coordinate variables have been suppressed. in words, this shows that
the projection of a 2-D convolution of two functions is the 1-D convolution of the
projections of the functions. From this conclusion, it is just a very short conceptual hop to
the realization that the same relationship holds for 2-D correlations. Thus, we now have
the mathematical capability of deriving the projection of a 2-D filtering or correlation
operation simply by performing 1-D filtering or correlation of the projections of the original
functions. This is a very powerfu result and holds much promise for application to optical
processing.
leB.4. Inverse Radon Transform

Since most of the research into the Radon transfomm has been directed at the solution
of inverse problems, there has been a plethora of publications devoted to the inverse Radon
transform. Therefore we shall limit our mathematical discussion to a straightforward
derivation of the inverse transform, with some comments made about algorithms appropriate
to optical reconstruction methods. Readers interested in an in-depth mathematical
development should consuit some of the other literature, notably Rowland (1979), Deans
{1983), and Barrett (1984).

The inverse Radon transform is most easily derived by applying the centrai-slice

theorem to the polar form of the inverse 2-D Fourier transform:

® «®
FiMEo)] = f(n) = I[ de, J do o F(p) e*2Tip°r (14)

J= .

Invoking the central-slice theorem [eq. (7)], we set p = Av, p = v, 8, =¢,and F(p) =

F(flv) = A(v,d) in eq. (14), yielding:
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2 4 [. )
f(r) = | de l dv |v| A(v,9) e*Zﬂivn'r
J, J -
x
’J de [ Futhvl Aol e e (15)
o

This is one form of the inverse Radon transform. In words, it reconstructs a 2-D function
f(r) from a complete set of projections A(p,9) by the following steps:

M 1-D Fourier transform A(p,$), vielding A(v,d);

(2)  multiply by |v|;

(3) inverse 1-D Fourier transform the product [|v| A(v,$)]);

(4) smear this 1~D function perpendicular to the line defined by p=r * §;

(5) sum over all angles 4.
Step 4 generates a 2-D function from the 1-D projections and is referred to as *back-
projection® since it is the complementary operation to projection. Step 2 is a filtering
operation in Fourier space to correct for the sampling nonuniformity of the transformation
from Cartesian to Radon space mentioned previously.

It is instructive to rearrange the steps to obtain another recipe for the inverse
transform. Back-projection and summation (steps 4 and 5) may be performed first to
generate a 2-D unfiltered summation image (sometimes cailed a *layergram®). The point
spread function of the layergram has been shown to be p(r) = |r|~! (Peters, 1974), which
implies a transfer function %, [|r|™ ] = |@|='. This distortion may be carrected by
filtering in 2-D with transfer function |p|, an operation commonly known as *rho-filtering"
(often, albeit imprecisely, the 1-D filter |v| in step 2 is also referred to as a rho-filter).

In reality of course, the noise dominant at high spatial frequencies requires either filter to

be rolled-off, or “apodized.® Since our rationale for signal processing in Radon space was
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to avoid unnecessary 2-D operations, we shall not consider implementations of the
alternative recipe. Interested readers should consuit Barrett and Swindell {1977, 1981) or
Barrett (1984).
We can also express the inverse Radon transform in operator notation (Barrett, 1984),

expanding the operator R,~! into the sequences:

Ry =8, F.7 v F,
=4 0| .8, . (16)

where B, is the operator notation for back-projection.

The inverse Radon transform algorithm [eq. (15)] can be recast into a more concise
form by invoking the filter theorem of Fourier transforms to create a convolution of
functions instead of a product of their Fourier transforms. That is,

F0 U] ACvee) 1= h(o) * A(pa), a7

where h(p) = j{f‘ [ [o[ ] is the filter function in the coordinate space representation.
Lighthill (1962) showed that h(p) = f"‘ (vl ] = -51,;,, where the singularity at the

origin requires that it be interpreted as a generalized function which has a Dirac deita

function at the origin. A realizable interpretation is (Gmitro et ai., 1980)

]
h(p) = lim ['pﬂ lpl > ¢

(18)
[ 1 b
l_g‘z ol < e

Note that h(p) is bipolar. We can now represent the inverse Radon transform in one
equation, with the important proviso that the true nature of the filter function be
recognized:
"
(o m-ty | ae [api) a (19)
2% J ' prlp=r-n
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The operations required to implement this algorithm for the inverse Radon transforn are the
source of its common name, filtered back-projection. Integration of the convolution

product by parts vields other possible expressions for filtered back-projection (Barrett,

1984):
x
f(r) = 5 P l de [x'(m)'%] o= (20)
Jl
1 )4
=5;7[ de [A"(p,9) *In |D'|l|p=r.ﬁ (21)
e
1 [' a2 .
= 53" de LW [ A(P.e) * In Ipll] o=red * (22)

[ ]

where P [; dx] denotes the Cauchy principal value of the integral, and the primes (e.g.
1'(P.¢) ) represent derivatives of the function with respect to p. Each representation of
the inverse Radon transform [eq. (19-22)] requires a bipolar filter function, a fact having
important consequences for optical implementation. Which representation is optimum
depends strongly on the limitations of the signal and available hardware. For instance, the
dynamic range of the 1-D filter function In |p| in egs. (21-22) is much less than that of
-p™? or P{p~!], thus reducing the dynamic range required of the 1-D convolver at the cost
of increased noise inherent in taking the second derivative of the projection.

An alternative development of the reconstruction problem was made independently by
Cormack. Though not as straightforward in application as filtered back-projection, we shall
discuss it briefly because it can potentially be implemented by optical methods (Ein-Gal,
1974) (Hansen and Coodman, 1978). Cormack's development is based on the periodicity in
angle of every physically realizable object, i.e. f(r,8) = f(r,8 + 2%¥). As a result, f(r,8) can

be expanded in a discrete Fourier series of anguiar basis functions, which are cailed circular
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harmonics:
f(r,0) = Z £, (r) ein® (23)
n=-ao
where
f (F) = 21"- [ de f(r,8) e~ind, (24)
] -»

Cormack expandéd the projections A(p,¢) in the same manner and derived the space-variant
transforrﬁation between these two representations. The transformation can be made space-
invariant via a Mellin transform (Casasent and Psaltis, 1977), and can then be processed by
optical methods (Hofer, 1979) (Hansen, 1981a, 1981b). However, the Cormack
reconstruction algorithm is not directly applicable to our task at hand, so we shall not
consider it further.
1.C. Application to Optical Signal Processing

To summarize the mathematical deveilopment, we have demonstrated that the classic
2-D signal -processing operations of Fourier transformation and convolution (fiitering) can
be performed via the equivalent 1-D operations on the Radon projections, producing central
slices of the 2-D Fourier transform or projections of the 2-D convolution. Of course, there
are optical methods available for performing these 2-D operations as weil. Coherent
computation of the of the 2-D Fourier transform has always been the basis of optical signal
processing, but limitations of speckle noise and performance of available spatial light
modulators have generally restricted application to static film transparencies in liquid
gates. By placing the input in the front focal plane of the transform lens, the correct

magnitude and phase of the 2-D Fourier transform are produced in the back focal plane

(limited by lens aberrations). However, the phase of the transform is coded in the reiative
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phases of the coherent wavefront at the various locations in the Fourier plane. Preserving
this phase information requires a very precise and stable optical configuration, and square-
law detection necessitates heterodyne techniques to decode it. Optical
convolution/correlation can be performed by spatial filtering in the Fourier plane or by a
jont transform arrangement (Weaver and Goodman, 1966) (Rau, 1966). Problems still
abound, however. The stability and positioning requirements are stricter yet, generation of
a true complex (magnituﬁé and phase) spatial filter is nontrivial, and deriving the phase of a
complex convolution remains difficuit. Incoherent optics avoids the speckie noise problems,
apd architectures are available for performing Fourier transformation and convolution
(Rogers, 1977) (Monahan et al., 1977), but representation of negative quantities requires a
bias or two signal channels.

On the other hand, the corresponding 1-D operations of Fourier transfornation and
convolution can be performed readily and rapidly by devices based on electronics, acoustic
interactions, or charge transfer. By constructing optical systems to perform the
dimensional transduction to and from Radon space, we can utilize these technologies to
“perform the corresponding 2-D operation. By so doing, we may be able to loosen the
constraints on signal input format and system stability, at the cost of some processing
parailelism. The resulting hybrid systems can emphasize the strengths and minimize the
weaknesses of each technoiogy. If the optical dimensional transducers and the 1-D
processors are fast enough, we may still be able to perform the complete 2-D processing
operation at a usefully rapid rate, e.g. 3U frames/second.

1.C.1. Optical Radon Transformer
The forward Radon transform [eq. (2)] is generated by integrating the input function

f(r) along the set of lines perpendicular to the azimuth ¢. This can be done optically in

several ways, depending on the format of the input data and the type of signal processor to
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be used. Radon projections can be generated as temporal data by scanning the input
function with a line of light (usually from a laser) and integrating the resultant intensity on
a detector. This method is suitable for transmissive or reflective input data. At one
instant, the detector signal is proportional to the line integral of input transmittance or
reflectance. Sweeping the line of light perpendicular to itself generates a temporal signal
proportional to one line-integral projection. The azimuth of the scan can be optically
rotated (e.g. by a dove prism) to sequentially derive the complete set of projection data. .
For obvious reasons, this optical Radon transformer is called a flying-line scanner, and is
shown schematically in Figure 4 (Easton et al., 1984). Since the light transmitted or
reflected by the 2-D input is integrated on the detector, speckie noise is irrelevant, and a
laser can be usefully employed as a light source. Indeed, the coherence of the laser
becomes an advantage, as it allows the use of a fast acousto-optic beam deflector, or a
slower and cheaper holographic deflector (*hologon scanner®). The technology of optical
scanners and image rotators permits a system to be built capable of performing Radon
transforms at video rates with video resolution (30 frames/sec, 500x500 points). This
would require scanning 500 azimuth angles with 500 resolvabie data points per scan every
30 mS. Acousto-optic Bragg-cell scanners capable of resolving more than 1000 points per
10 yS scan have been reported (Cottlieb et al., 1983). To preserve the phase of the
projection, the temporal center of the flying line scan must intersect the image rotation
axis each time, i.2. the optical rotation axis of the prism must not wobble. Scanning a full
projection set in 30 mS requires an image rotation rate-of 180°/30 mS = 900 RPM, implying
a prism rotation rate of 450 RPM. Such systems hav+ been constructed and demonstrated
{Gmitro and Gindi, 1985). Indeed, much higher rotation rates have been reported while
preserving holographic image quality (Stetson and Elkins, 1977). Radon transformers based

on the flying-line scanner are most useful for 2-D signals on transparencies (e.g. movies)
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.‘
or for real reflective scenes. by
L%
Projection data can also be generated by °collapsing® an image of the 2-D signal onto "

® a linear array or imaging detector with anamorphic optics (Figure 5). The anamorphic

optical element can be a cylindrical lens (Cindi and Gmitro, 1984), or a coherent optical

fiber bundle (Farhat et al., 1983). Alternatively, if an N-element 1-D linear array :
o detector can be obtained with an aspect ratio of N:1, anamorphic imaging is unnecessary.

An array detector samples the projection, making this arrangement especiaily useful if the

e

data is to be processed digitally. An image rotator is still required and hence the
projections are again generated sequentially. This type of system is adaptable to naturally
illuminated scenes or to self-luminous signals, as from a CRT.

1.C.2. 1-D Signal Processor Technologies

‘- w e -
B B

As was demonstrated in egs. (19-22), the inverse Radon transformation requires
convolution of the projection data with a bipolar 1-D filter function. Therefore we shall

now shift gears somewhat to investigate the types and capabilities of available 1-D signal

E A S

processors. These will be lumped into four categories: electronic devices (both digital and

analog), charge-transfer devices (mainly CCDs), acousto-electric devices (primarily those
based on surface acoustic waves, or SAWs), and acousto-optics (AO). In the first case, the
Radon transform allows direct application to 2-D problems of the very technoiogies that

optical methods are supposedly competing against on the signal-processing battiefield.

leC.2.a. Electronic Systems

e o e
'O'I a_ = ®

Electronic systems (analog and digital) for processing temporal signals are no doubt
familiar to the reader. They can be as simple as an RC filter or as complex as a digital

supercomputer. The accuracy, precision, stability, and flexibility of electronics are

» % Y eV 2R

products of many decades of theoretical and engineering effort, with the result that

electronic systems are generally preferred for signal-processing applications. This is the
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target at which proponents of optical signal processing must aim, but it is moving ahead all
the time. New materials, such as GaAs, and new fabrication technologies, such as x-ray
lithography, promise further improvements in packing density, speed, and cost of electronic
Jdevices. Even the traditional advantage of parallelism offered by optical processing is
fading, as new aigorithms and chip architectures are adding parallel capability to the
electronic world.

Electronic signal processing is generally divided into analog and digital domains, each
having its own advantages and disadvantages. Analog processing represents signal
amplitudes by proportional voltages that can be added, subtracted, and divided. Some
nonlinear operations (e.g. thresholding) are easily performed as well. Analog processing
with active and passive components can be fast, with bandwidths reported to = 2 GHz for
silicon devices and up to 20 GHz for GaAs (Bierman, 1985). More complicated operations
{e.g. multiplication, root finding) are possible with special analog modules, but operation is
much slower and subject to severe limitations in linearity, stability, and precision. For
some applications, the restrictions can be eased by using the analog voltage signal to
modulate a radio-frequency (RF) carrier. RF devices capable of several useful operations
are available, including muitiplication, phase shifting, and phase detection. Though still
limited in linearity and stability, these devices can be profitably used for analog signal
processing.

The advantages of digital systems are well known--probably too well known to the
optical processing community. But they have their limitations too, lack of speed and large
power consumption being two of the most important. Sampling limits system bandwidth and
subjects the sampled signal to aliasing. A/D and D/A conversions may have to trade speed
for precision and dynamic range. Clock rates are limited to =500 MHz for silicon-based

logic. However, improvements are being made continuously. For instance, the increased
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mobility of gallium arsenide charge carriers allows clock rates up tn several GHz with lower
power consumption (Bierman, 1985). Cenerally the limited disadvantages of digital
processing have been more than offset by its inherent noise immunity and linearity. An
unlimited variety of signal-processing operations are amenable to solution by digital means,
and new special-purpose hardware promises to increase speeds dramatically. The very-
high-speed integrated circuit (VHSIC) program of the Department of Defense is stimulating
the design and production of new devices, such as the Westinghouse compiex arithmetic
vector processor, which can perform a 1024-point 16-bit compiex Fourier transfonm in
130 uS, compute one point of a 256-element 16-bit correlation in 6 uS, and multiply a 64x64
16-bit matrix by a 64-element vector in 35 uS (Marr, 1982). Digital parallel operation is

becoming more economical as design costs drop and fabrication yields increase, but cost is

still a significant limitation for such devices and is likely to remain so.
1.C.2.b. Charge-Transfer Devices

Charge-transfer devices can store and manipulate packets of electronic charge using
two structurally different circuit technologies. The older *bucket-brigade® device is a
series of MOS transistors and capacitors, where the charge is moved between capacitors by
aiternate switching of the transistors. These have been largely superseded by charge-
coupled devices (CCDs), where minority charge carriers are stored under closely-spaced
electrodes. Charges are moved to detectors at the edges of the array by sequential pulsing
of the electrodes. The most familiar use of CCD devices has been as 1-D and 2-D optical
Jetector arrays, where the amount of charge in a detector cell is proportional to the photon
flux., However, it is also possible to use them as signal processors, where the samplied data
vaiues are denoted by the varying amounts of charge . By moving, summing, and detecting

‘ A the charge packets in various ways, a variety of processing operations can be performed.

The resulting devices are an interesting hybrid of analog and digitai qualities, since the
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amplitude of each discrete sample is a continuwus variable. CCDs can obviously be used as

delay lines, with applications to signal time and bandwidth compression. Tapped delay lines

and fixed -transversal filters can be constructed by spacing nondestructive charge detectors .

along the charge pathway and summing the tapped signals (Buss et al., 1973) (Beynon and

P AL

Lamb, 1980). With variable weights, the filter is programmable. Multiplying adjacent
tapped signals from two CCD deiay lines and summing the products allows computation of a
discrete convolution. ' The useful dynamic runge of these CCD devices is limited by the
quantum noise floor and the saturation level, with typical specifications of 60-70 dB (30 dg
for the convoiver). The bandwidth of the CCD devices is determined by the analog
electronics and the sampling clock rate, ranging from a few Hz to 5 MHz.

By combining the CCD devices described above, a wide variety of 1-D signal-
pracessing operations is possible. The utility of fixed and programmabie CCD transversal
filters and of the CCD convolver for signal processing is obvious. Using two or three filters :
with linear FM (or chirp) impulse responses, the chirp z-transform algorithm can be S:
implemented (Rabiner et al., 1969). This algorithm will be discussed in some detail later.

CCD spectrum analyzers using the chirp z-transform algorithm have been demonstrated

P PR )
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which are capable of computing a 512-point z-transform at a 5 MHz sampling rate.
1.C.2.c. Acousto-Electric Devices

Piezoelectric materials distort when placed in an electric field, and also they generate
a field when mechanically stressed. By applying a moduiated RF electric field to a
piezoelectric medium, a corresponding acous-i¢c distortion is generated which can be

processed and detected. This acoustic wave propagates in the medium at a characteristic
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velocity v, = 10°5 c. Thus, the acoustic wavelengths are much shorter than the

o .
2

electromagnetic wavelengths, allowing signal processing devices that are many wavelengths \

long to be constructed in small packages. Components based on acoustic waves in bulk
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materials, such as the quartz oscillator and delay line, have been used for mzny years.
More recently, however, much attention has been paid to using acoustic waves on the
surface of a mediun (surface acoustic waves or SAWs) due to their accessibility. Once a
wave has been generated on the surface of a medium, it can be sampled at any point in its
journey along the surface. A diagram of a simple SAW device is shown in Figure 6. A pair
of conductive transducers is deposited on the surface of the piezoelectric crystalline
medium. The input signal (often on a carrier) is applied to the input transducer, consisting
of a set of interleaved ‘fingers' connected to buss bars. The field distorts the medium
piezoelectrically, and the acoustic wave travels along the surface of the crystal to a simiiar
transducer where it generates an electric RF signai.

If we think of the SAW device in Figure 6 as a delay line, the sampling of the acoustic
wave by the output transducer is a tapping and summing operation performed in parallel for
many points in the acoustic wave. Hence, the SAW device is another example of a
transversal filter. Variation of the spacing and overlap of the transducer fingers produces
different impulse responses, allowing a wide variety of operations to be performed. The
utility of SAW fiiters is such that several design procedures have been developed (‘Matthews,
1977) (Gerard, 1978), and the filters themselves are manufactured by standard
photolithographic techniques (Smith, 1978). SAW bandpass filters are available for center
(carrier) frequencies from 10 MHz to 2 GHz and bandwidths from <100 kHz up to 50% of
center frequency (Morgan, 1985). The noise-limited dynamic range is typically 70 dB,
comparable to that available from CCDs. Indeed, it is interesting that CCDs and SAW
devices are so complementary, offering similar signal processing capability over a wide
range of input frequencies (Roberts, 1977).

Linear FM, or chirp, SAW filters are easily made and have found wide application to

radar systems (Klauder et al., 1960) (Cerard et al., 1973). More recently, they have been
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employed in spectrum analyzers and Fourier transformers (Jack and Paige,‘1973) (Jack et
al., 1980). The transducers are designed such that the impuise response of the filter is a
® signaﬁ of linearly increasing or decreasing frequency. SAW interdigital chirp filters are
limited to bandwidths of about 500 MHz, dispersion times of 50 uS, and effective time-

bandwidth products of about 1000 (Morgan, 1985). Frequency dispersion can also be

L achieved by spacing acoustic reflectors on the substrate.. These so-called reflective array
compressors (RACs) have been reported with bandwidths to 180 MHz, dispersion times to
90 uS, and time-bandwidth products of 16,200 (Gerard, et al., 1977).

- Other useful SAW signal processors can be made by utilizing the nonlinear response of
the substrate to severe distortions. If strong acoustic signals are applied to éach end of a
substrate, the two waves will interact nonlinearly to generate higher harmonics. The

- second harmonic of the carrier frequency contains information about the product of the two
signal amplitudes. Integration of the second harmonic frequency over the substrate by an
area electrode produces a temporal signal proport'ional to the convolution of the input

- signais. Since second hammonic generation is inefficient, the convolution signal will be
weak, typically 80 dB below the input signal levels. Even so, noise-limited dynamic ranges
of 60 dB, and spurious-signal-limited dynamic ranges of 30 dB have been reported (Ash,

& 1978). Acoustic convolvers are avail-able commercially with time-bandwidth products
approaching 2000 (Morgan, 1985).

leC.2.d. Acousto-optics

L {}

Acousto~optic processors are reviewed in detail elsewhere in this volume, so we shall
discuss their capabilities only briefly. As mentioned above, an RF electromagnetic wave

can be transformed into an acoustic wave in a medium via the piezoelectric effect. The

L4 variation in material density modulates the refractive index, producing a phase yrating

which can diffract light. Devices based on the interaction of sound and light have long
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been used in signal processing as efficient 1-D spatial light modulators and beam deflectors
(Xorpel, 1981). Developments in materials and architectures in the last 15 years or so have
o led to new applications for bulk A~O devices in signal processing, including time-integrating
and space-integrating correlators/convolvers (Berg et al., 1979) (Rhodes, 1981a)
(Abramovitz et al., 1983), Fourier transformers (Lee et al., 1982) (Pancott and Reeve,

[ 1985), and generation of 1-D time-frequency representations (e.g. the Woodward ambiguity

function) (Athale et al., 1983) (Casasent, 1983). The interaction of light and surface
acoustic waves has also been applied to various signal processing operations (Das and Ayub,
- 1982) (Casseday et al., 1983). Indeed, AQ devices and SAW devices are inherently
compatible, for the obvious reason that the processing mechanism is so similar. Limits on
carrier frequency, bandwidth, and dispersion time are comparable for both types. AQ
o materials support carrier frequencies in the range of (1 MHz < v, <1 GHz), with
bandwidths of up to 500 MHz, interaction times of up to 80 uS, and time-bandwidth
products greater than 10,000 (Berg et al., 1979).
L 1.C.3. Optical Implementation of the Inverse Radon Transform
Having discussed the technologies available for 1-D signal processing, we are now
ready to describe methods for reconstructing the 2-D processed signal from the 1-D
projections. Two mathematical aigorithms for reconstruction have already been discussed:
filtered back-projection and circular harmonic expansion. As stated, the latter is more
complicated to implement and not as appropriate for signal processing applications, and so
| 4 will not be considered further here. Interested readers should consult the work of Hansen
and Goodman (1978), Hofer (1979), Hofer and Kupka (1979), and Hansen (1981a, 1981b).
In our mathematical development of fiitered back-projection, we stated that 1-D
L filtering can be performed before back-projection, or 2-D filtering afterwards. Optical

reconstruction systems have been built which filter in 2-D (Peters, 1974), but again we are
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more concerned with application of 1-D technologies to the problem. Sevaral hybrid
optical systems have been proposed or built to implement 1-D filtered back-projection, and
we shall give a brief overview of those systems here. Readers desiring more detail should
consult the original papers or the review articles by Barrett and Swindell (1977) and Cmitro
et al. (1980). To lessen problems associated with coherent noise, these systems used
incoherent illumination. However, it is essential to recall that the filtered projection is
bipolar, requiring that any reconstruction scheme preserve sign information. Because of
this constraint, systems based on incoherent optics must place the projection signal on a
bias or employ two signal channels. Neither of these alternatives is desirable; biased
signals reduce the contrast of the reconstruction, and dual-channel systems are subject to
differential signal errors.

After 1-D filtering, the algorithms of eqgs. (19-22) require two more steps: back-
projection and summation. Back-projection, i.e. generation of a 2-D function from a 1-0
projection by °smearing’ perpendicular to the projection azimuth, has been demonstrated by
anamorphic optics. The projection is written on the face of a 1-D display device (e.g. a
CRT or LED array) located one focal length from a cylindrical lens, and imaged onto an
integrating 2-D detector or display device. As this operation is performed for each
projection, the reconstructed image is built-up at the output plane. Any integrating 2-D
detector can be used for summation of the back-projections (e.g. photographic film, video
camera, or human eye if the system is fast enough).

The hybrid optical-electronic reconstruction schemes have differed greatly in detail
and degree of success. The system of Duinker et al. (1978) was mostly based on analog
electronics, with only filtering performed opticaily. The projections were displayed in

sequence on a CRT and imaged onto two area-weighted optical masks representing the

positive and negative  parts of the filter function. The images of the projections were
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swept across the filter masks by e!ectronic deflection, and the integrated transmitted
signals electronically subtracted to obtain the bipolar temporal filtered signals. Back-
° projection and summation were performed electronically. Edholm et al. (1978) stored the
Radon projections on film in sinogram format A(p,$). A filtered, biased sinogram was
generated by sandwiching a positive image of A(p,4) and a negative image of
® A(p,9) * h_(p), where h_(p) represents the negative part of the filter function in eq. (18).
Back-projection was performed for each line of the sinogram by a cylindrical lens, with
summation on a suitably rotated piece of photographic film. Despite the dynamic range
- limitation inherent in the use of a bias, this system produced some good reconstructions.
Probably the most successful incoherent optical reconstruction systems synthesized the
required filter function by OTF synthesis. This method is based on the fact that the OTF is
b the autocorrelation of the pupil function (Lohmann, 1977) (Rhodes, 1977) (Rhodes and
Lohmann, 1978) (Stoner, 1978). Two pupil functions are calculated for which the
difference of the autocorrelations is the Fourier transform of the required filter point
o spread function. An infinite number of pairs of pupil functions are theoretically possible,
with the optimum choice determined by system requirements such as light throughput or
noise considerations. Since the required positive part of the filter psf is a delta function
{eq. (18)], a clear pupil in the positive channel is appropriate. Two negative-channel
pupils successfully demonstrated are the so-called Ronchi pupil (Barrett, Greivenkamp et
al., 1979), and a logarithmic phase plate (Barrett, Chiu et al., 1979). The envelope of the
point spread function of either pupil falls off as 1/p?, as required. Optical reconstruction
systems based on OTF synthesis include the drum processor (Gordon, 1977 (Cmitro et al.,
1980), the loop processor (Greivenkamp et ai., 1981), and a hybrid digital-optical system
® (CGmitro et al., 1980). An example of image reconstruction with the loop processor is

shown in Figure 7.
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A reconstruction system that is most applicable to tomographic signal processing tasks
was proposed recently by Gmitro and Gindi (1985). It is capable of performing a 500 x 500
point reconstruction of projection data at video rates. The system, depicted in Figure 8,
implements the algorithm of eq. (19). Filtering is performed by a space-integrating
acousto-optic convolver, as shown in Figure 9, though a SAW convolver could be used as
suggested in section 1.C.2.c. The projection data are stored in a fast digital memory and
read out line-by-line to a fast D/A converter. The analog signal modulates an RF carrier
and is then impressed on a Bragg cell. The diffracted light is Fourier transformed by a lens
and filtered by a spatial binary transmission mask. The diffracted light is retransformed,
collected by the detector, and demodulated. The filtered projection is displayed on a CRT
and back-projected by a cylindrical lens. Azimuth selection for the back-projection is
accomplished by an image-rotating prism, and the 2-D image is collected by a video camera
and displayed on a conventional CRT. The image data are read out rapidly enough for
operation at video rates (30 reconstructed frames/second). The design goal is to process
projections at video rates with a dynamic range of 12 bits, implying a signal-to-noise zatio

of about 4000. Preliminary results are presented in Figure 10.
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1l. Applications
ll.A. Operations on 2-D signals

As was evident from our mathematical deveiopment, the application of the Radon
transform to signal processing primarily exploits the central-slice and filter theorems, which
allow operations based on Fourier transforms and/or convolutions to be performed on the
1-D projections. Useful operations of this type include the Fourier transform and its
relative, the Hartley transform, 2-D filtering, some pattern-recognition algorithms,
bandwidth compression, and spectrum estimation. Some of these operations require the
flexibility of digital operation but are included to indicate the scope of application of Radon
methods. Since application of projection operations to signal processing is a field that has
yet to be fully plowed, much of our treatment will deal with feasibility rather than actual
results.
lleA.1. Fourier Transformation

Since it is a signal -processing staple, and also because of its close relationship to the
Radon transform via the centrai-slice theorem, it seems natural to commence our discussion
of applications with 2-D Fourier transformation. After having been generated by one of
the systems described in section |.C.1., each projection is Fourier transformed and the
result is displayed in the polar format required by the central-slice theorem. To perform
the 1-D Fourier transform, we introduce the chirp transform algorithm, which is derived by

decomposing the Fourier kernel:

“Zmivt il -in(B)E | _tim(~ - at)?

a-2wiv =°”(B) x e 1w(Bt)* L o !(B 8t)*, (25)
The three complex exponentials are quadratic phase terms or linear FM signals, i.e. the

instantaneous frequency of each varies linearly with time. Such signals are commonly

called chirps by the radar community. The factor 8, with dimensions of temporal
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frequency, has been introduced to rationalize the units of the exponent. A 1-D temporal

Fourier transform can now be written:

F(v) = l[ dt f(t) e"2Tivt

J -~

had |
*'iﬂ(%)z J dt [[f(t) e‘i‘l( st)l ] X e’i!(% he Bt)zJ

.
=e"iT(B1)®  ([f(r) e~iT(BY)}y o e*ir(Bt)'ll(v TR (26)
Thus, by employing three temporal chirp signals (one with positive exponential term, or
upchirp, and two with negative terms, or downchirps), the Fourier transform of f(t) can be
implemented in three steps:

(1) multiplication of f(t) by a downchirp;

(2) convolution of the product in a filter with an upchirp impulse response;

(3) multiplication by a downchirp.
The resulting temporal signal is a scaled version of the Fourier transform, where the
frequency is related to the output temporal coordinate by v = 8%*t. The pre- and
postmuiltiplication chirp signals can be generated by applying impuisive inputs to filters with
upchirp impulse responses. Note that this analysis has assumed that the chirp signais are
complex and of infinite length. If only the power spectrum is required, the
postmuitiplication in step 3 can be eliminated. Because of the order of operations, this
algorithm is usually referred to as the M-C-M chirp transform, for muitiply-convolve-
muitiply. The duality of muitiplication and convolution in coordinate and Fourier space
imply that the operations can be exchanged to produce a second arrangement for chirp

transforms, the C-M=~C transform (Jack et al., 1980). It has the disadvantage of requiring

three filters even if only the power spectrum is required. For sampled data, Fourier
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transformation is equivalent to evaluation of the z-transform on the unit circle. The
comparable implementation using sampled chirps is therefore called the chirp z-transform
(Rabiner et al., 1969).

It is instructive to reconsider coherent optical Fourier transformation in light of the
chirp transform algorithm. Propagation of light in the Fresnel region can be described as
convolution of the wavefront with a quadratic-phase impuise response, and the action of a
spherical lens on a wavefront is multiplication by a quadratic phase, so the common 2-f
coherent fFourier transformer is a version of the C-M~C chirp algorithm. An optical version
of M-C-M is also possible (Whitehouse, 1977).

The chirp Fourier or z-transform can be implemented for real 1-D data (as would be
obtained from a flying-line scanner) using the technologies described previously, but the
analysis differs somewhat from that given in eqs. 25~26. A basic temporal signal filter has
a real, finite-length impulse response, often modulating a carrier. For example, the impuise
response of a SAW chirp filter is of the form

2

he(t) = A(t) COS[u.t t %—] (27)

where A(t) is the apodizing function of the filter, w, is the initial carrier frequency, and a
is the "chirp rate’, or rate of change of the instantaneous frequency. For SAW filters, the
carrier frequency w, is in the RF region (=15 - 300 MHz). The frequency of h,(t) rises
with time, so this function is again cailed an upchirp. Using these realizable filters, the
chirp Fourier transform may still be implemented, but the phase of the transform is now
determined relative to the phase of the carrier (Jack and Paige, 1978). The recipe for the
chirp transform becomes:
(1) premultiplication by a downchirp;

(2) convolution (filtering) with an upchirp;
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(3) postmuitiply by two upchirps separately, with phase difference of 7/2;
(4) low-pass filter both signals from step 3.

The complex transform is thus generated as two parts simultaneously. The signal derived
from the in-phase chirp of step 3 is the real part of the complex Fourier transform, or
cosine transform. The quadrature signai yields the sine transform, or imaginary part of the
Fourier transform. Note that the sign of the slope of the postmultiplication chirp differs
for the realizable algorithm relative to that for complex chirps. This is due to double-
sideband multiplication of the carrier-borne signals, which yieids signals at the sum and
difference frequencies of the carriers. By selecting the difference frequency sideband with
the low=-pass filter, the operation is equivalent to postmultiplication by a chirp of the
opposite sign. The output temporal signal maps linearly to frequency with constant of
proportionality a. Since the real chirp signals are apodized by A(t), their time-bandwidth
product (TBW) is finite, thus limiting the frequency resolution of the transformer. The
maximum system TBW is one~fourth the TBW of the convolution chirp (Ash, 1978). It should
be noted that the SAW chirp transform algorithm can also be implemented for compiex input
data by premuitiplying the imaginary part of the input signal by a chirp in quadrature to the
real-part premuitiplication chirp (Jack and Paige, 1978). Using surface acoustic wave
reflective array compressive filters, a system capable of transforming signals 60 uS long
with 60 MHz bandwidth was demonstrated by Cerard et al. (1977). SAW chirp Fourier
transformers are faster and require less power and bulk than ail-digital systems, but are
less accurate.

The chirp Fourier transform algorithm can be implemented with AO devices as well,
Hotz (1984) and Pancott and Reeve (1985) have demonstrated M-C-M transforms using

space-integrating architectures incorporating two Bragg ceils. The 1-D input is multiplied

by an electronically-generated chirp signal in an RF mixer, and the product appiied to one
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Bragg cell. The +1st diffraction order is selected and imaged on the second Bragg cell,
which is driven by the same electronic chirp signal. The -1st diffraction order emerging
from the second cell is selected, integrated on a detector, and demodulated. Hotz reports
a system bandwidth of 25 MHz for a signal duration of 5 uS, limited by the capabilities of
the AO cells and by problems with generating the proper postmultiplication chirp slope.
Such a system has similar mechanical stability requirements as other coherent optical
systems, but are readily applicable to signal processing in Radon space.
IleA.1.a. 2-D Power Spectra

Ticknor et al. (1984) demonstrated production of 2-D power spectra via the Radon
transform and the SAW chirp Fourier transform. Their system is diagrammed in Figure 11,
The Radon projection of a 2-D transparency f(r) is generated by a Bragg-cell-driven
flying~-line scanner. One projection is derived in 10 yS. Premultiplication by the SAW chirp
is performed in an RF mixer. This product signal is applied to the convolution chirp fiiter,
whose output is the Fourier transform on an RF carrier. Since the phase of the Fourier
transform is not required, the output of the convolution filter is detected incoherently with
a diode, producing a unipolar signal proportional to the squared-modulus of the Fourier
transform. The SAW filters used had time dispersions of 10 MHz and bandwidths of 20 uS.
Power spectra were generated by the system within 28 uS after commencement of the
flying-line scan. The spectra were 20 uS long with 50 resolvable frequencies. By the
centrai-slice theorem, the detected signal must be dispiayed in a polar format to generate
one line through the 2-D power spectrum. However, as the 2-0 spectrum is built up, the
polar raster oversamples the low spatial frequencies, producing a displayed time-averaged
intensity that is too bright in the center. Mathematically, this problem is due to the
sampling nonuniformity of the Radon transform, and is corrected by rho-filtering, i.e. the

central slices of the power spectrum are multiplied by |v| in an RF-mixer before detection.




m" Y Lvall S il sail A lra i el It St b i A el it A o i i i s i N A S gl A e R R il G sl il AN SR A S Rl gl U g ARl 0t "
-

. ;
& -32 -
,..
After one transform slice has been displayed, the prism is rotated and a new projection ;
generated. The power spectrum of that projection is displayed at the new azimuth on the .
™) CRT. Integration of the result can be done on film, or by eye if the system is fast enough.
System speeds up to 5 frames/sec. have been demonstrated, limited by the rotation rate of ,:
the stepper motor driving the image rotator in the flying-line scanner. Results for a 2-D
) function are shown in Figure 12.

{l.Acl.be 2-0 Complex Fourier Transforms

The same group (Easton et al., 1985b) added a post-multiplication chirp to their system

to generate the complex Fourier transform, as diagrammed in Figure 13. The time deiay of

the post-muitiplication chirp is derived from a digital delay generator (1 ns resolution). To
obtain more precise time delay, the phase of the postmultiplication chirp can be varied with
a continuously adjustable RF phase shifter. The postmultiplication itself occurs in an RF
phase comparator, which generates voitages proportional to the in-phase and quadrature
products of two input signals. The in-phase term is the cosine transform, and the
quadrature term is the sine transform. Performance of the complex SAW chirp transformer
is shown in Figure 14,

Rho-filtering of the complex transform before display is somewhat more difficult than
for the power spectrum. The frequency of the demodulated signal is too low for
multiplication in RF mixers, and too high for analog multipliers. An integrated-circuit
balanced modulator was used instead. The two bipolar complex Fourier transform signais
were then biased up before application to the z-axis of the CRT. Resuits are shown in
Figure 15.

Since the phase of the transform is derived from the time differences of the projection
signal relative to the chirps, the coherence of the scanner beam is immaterial. This method

is therefore applicable to reflective scenes as well as to transparencies. An example of
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complex Fourier transformation of a reflective scene is shown in Figure 1o.

Another 2-D processing situation where Radon space Fourier transformation may prove
very useful is with spatial light modulators whose image quality is relatively poor.
Recently, there has been much interest in applying an inexpensive liquid crystal television
receiver to optical processing operations (Liu et al., 1985) (McEwan et al., 1985). The poor
phase uniformity of the LCTV limits its utility for coherent operations, though various means
have been suggested for improvement. Again, this is not a problem when used as input for
a flying-line scanner (Easton et al., 1985a). Some resuits in that application are shown in
Figure 17,

Farhat et al. (1983) also demonstrated 2-D complex Fourier transforms via Radon
space operations, but utilized a 2-channel incoherent optical correlator to generate the
1-D transforms. A 2-D complex signal was displayed on a CRT in two colors, e.g. real part
in red, imaginary part in green. The image was rotated by a dove prism, spectraily filtered
to separate channels, and collapsed to 1-D by two coherent optical fiber bundles. The real
and imaginary 1-D signais were correlated incoherently with a fixed cosine and sine
reference mask, respectively. The 1-D correlator outputs represented the real and
imaginary parts of the 1-D Fourier transform, which were then be detected and displayed in
the polar raster. The system is fast, but also suffers from the familiar limitations on
bandwidth and dynamic range common to other geometrical-optics incoherent correlators
(Rogers, 1977).
il.A.1.c. Hartley Transforms

A 2-D operation that is receiving some attention in the signal processing community is

the Hartley transform (Bracewell, 1983) (Bracewell et al., 1985). For a 2-D function f(r),

the Hartley transform is defined as:
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® (=
H(p) = { [ d*r f(r) cas(2%rp) , (28)
Jom |-
® where cas(x) = cos(x) * sin(x). The kernel of the Hartley transform is again a function of
the scalar product of conjugate variables and is in fact the difference of the real and
imaginary parts of the Fourier kernel. Being purely real, the Hartiey transform may be
e preferred over the Fourier transform for digital computation, since the storage requirements
could be halved. Being a linear combination of the reai and imaginary parts of the 2-D
Fourier transform, and hence of the 1-D Fourier transform of the Radon projections, the
¢ Hartley transform is easily implemented in Radon space. By subtraction of the real and
imaginary outputs of the SAW chirp transformer with a simple difference amplifier, the 1-D
central slices of the Hartley transform are generated. They are displayed in the same
o fashion as the Fourier transform.
l1.A.2. Filtering and Correlations
The filter theorem demonstrates that a projection of a 2-D convolution (correlation) is
® the convolution (correlation) of the corresponding projections of the 2-D functions. Since
devices or systems exist to perform 1-D convolutions (SAW devices, CCD convolvers, and
AO convolution systems), it is feasible to perform the 2-D operations in Radon space
€ (Gmitro et al., 1983). with a fast 1-D SAW convolver, such an operation can be performed
at video rates. A systemn capable of video-rate 2-D convolution or fiitering is depicted in
Figure 18. The projections of the filter function may be generated as needed from a 2-D
« image or stored in digital memory and read out through a fast D/A converter. A simulation
of 2-D high-pass filtering is shown in Figure 19, where the projections were generated
: optically, the 1-D convolutions and rho-filtering perfor.ned in a digital computer, and the
L]

back-projection again performed optically.
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If the projections of the filter function are stored in an addressable digital memory, as ::
suggested above, we have the capability to alter the impulse response of the 2-D filter by
® updating its digitaily stored 1-D projections. This could be useful if filtering a noise signal )
which varies over time and would enable the application of 1-D adaptive fiitering methods :
to 2-D situations. For example, consider a signal corrupted by noise. An adaptive filter
® acts on noise in a reference channel (correlated in some unknown way with the noise in the -
signal channel) to maximize the output siznal-to-noise ratio. This is accomplished by L
adjusting the filter's impulse response to minimize an appropriate error signal. The filter
4 parameters are derived from correlations between the signals in the input and reference i
channels~-operations that can be Iegit;mately performed on the Radon projections of 2-D
signals. In 1-D, the technique has been successfuily applied to a number of problems, e.g.
o telephone echo cancellation (Gritton and Lin, 1984), electrocardiography, and antenna o
sidelobe interference (Widrow et al., 1975). To the knowiedge of the authors, there is only : ‘
one demonstrated example of 2-D adaptive filtering., Tao and Weinhaus (1985) applied i
® adaptive noise cancellation techniques to removal of periodic signal-dependent noise in
digital imagery. By filtering the Radon projections with 1-D updatable stored functions in
a 1-D convolver, these adaptive aigorithms can be implemented while avoiding the
< limitations of available 2-D hardware.
Il.A.3. Pattern Recognition :
Some very useful pattern recognition operations can be profitably performed in Radon '_
< space. We have already demonstrated generation of the 2-D Fourier power spectrum. .
Gindi and Cmitro (1984) have used optical methods to rapidly extract integrated features \
of the power spectrum from the Radon projections. They have aiso demonstrated the E
o feasibility of evaluating a set of invariant moments, deriving the Hough transform, and ~

. .
'

finding the convex hull of a 2-0 input by operations on the Radon projections. Since the
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first three operations are probably of most interest, we shall briefly discuss each. )
11.A.3.a. Fourier Spectrum Features |
) Optical computation of features in the Fourier power spectrum has been feasible for
some years and has been applied to some industrial uses (Casasent, 1981). The wedge-ring
detector was developed for use in a coherent processor to compute the energy in the power
o spectrum in discrete segments of magnitude and orientation of spatial frequency. By
manipulation of the 1-D power spectra in various ways, the same kind of Fourier feature .
extraction can be performed. Integration of the power spectra of adjacent projections .
) produces information equivalent to that from the wedge segments. Sampling the 1-D

spectra and integrating over projections generates information from discrete spatial

frequency intervals, corresponding to the annular segments of the wedge-ring detector.

| Resuits from a computer simulation by Gindi and Gmitro (1984) are shown in Figure 20,

Il.A.3.b. Image Moments

Two decades ago, Hu (1962) described a system of linear combinations of image

P

o moments that are invariant to translation, rotation, and scale change. Later, Maitra (1979)

(3

S

modified the system to include invariance to relative image contrast. Six combinations of .

o

ten image moments Mpq are required, where: ~

\

c [ - [ L_J .
Mmoo = | dx dy xP y9 f(x,y) . (29) 5

Pq J J

- |~ N

»

The ten necessary image moments are my,, My,, My, Mgy, Maq, Mgy, My,, My, My,, and my,. o

»

© - Gindi and Gmitro (1984) demonstrated that the ten moments can be computed from four

projections spaced w/4 radians apart. The ten image moments and the linear combinations .

’.

can be rapidly computed by digital means from optically-generated projections. (

L .
:-.

‘!

K
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Il.A3.c. Hough Transform

The Hough transform was developed as a technique to speed detection of straight line
segments in digital imagery. Edges of the object are mapped by the Hough transform to a
parameter space, wherein peaks indicate the presence of straight lines in the object.
Deans (1981) described the close similarity between the Hough and Radon transforms. For
binary pictures, in fact, they are identical. Eichmann and Dong (1983) have proposed a
coherent system to generate the Hough transform, while Gindi and Gmitro (1984)
demonstrated that 1-D filtering of Radon projections can be used to edge-enhance a 2-0
image and derive the Hough transform simultaneously. Their digital simulations of the
computation of the Hough transform are shown in Figure 20.
l1.A.4. Image Coding and Bandwidth Compression

The potential of x-ray tomography in medical applications led to investigation of the
collected data required to obtain good image quality (Rowland, 1979). In turn, this has led
to application of the tomographic transformation to reduce image storage and transmission
requirements while maintaining image quality (Mersereau and Oppenheim, 1974), Since only
1-D compression operations are required after the projections are collected, rapid coding is
possible. To date, the work has been aimed at digital compression of the 1-U projections.
Smith and Barrett (1983) truncated and quantized the Fourier components of each
projection of a scene to reduce the data from 8 bits/pixel to 1.1 bits/pixel while retaining
good image quality. As they point out, the approach works very well with rectilinear
scenes, since significant Fourier components will predominate in a limited number of
projections. Fraser et al. (1985) investigated the effect of gross reduction of the number
of projections used, as well as quantization effects of various spatial frequency ranges.
Using 256x256 8-bit images, they obtained good image quality with as few as 0.86

bits/pixel.
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11.A.5. Spectrum Estimation

In temporal signal processing, the estimation of frequencies of a signal buried in
uncorrelated noise is a classic problem (Robinson, 1982), Averaging and modeling
techniques have been developed appropriate for distinguishing various types of signals (Kay
and Marple, 1981). Most are based on Fourier transform and/or correlation operations and
are hence adaptabie to operation in Radon space for 2-D signals. Traditional methods
incorporating averaging operations, such as the periodogram and the Blackman-Tukey
spectrum estimate, are most useful for detecting the presence of sinusoidal signais. To
compute the periodogram, windowed segments of the 1-D input are sampled and padded
with zeros. The size of the data window determines the frequency resolution of the
periodogram. The power spectra of the segments are computed and averaged. Since the
noise is uncorrelated, the signal spectrum should dominate in the periodogram. This
approach has become popular since the invention of the FFT algorithm. 2-D periodograms
are used in a similar manner for spatial signals (Dudgeon and Mersereau, 1984). For 2-D
signals, optical processing techniques can be used to estimate the spectrum. Indeed, one of
the success stories of optical processing, Labeyrie steilar speckie interferometry, generates
a form of 2-D periodogram where the signal segmentation is over time rather than over
space. Computation of the traditional periodogram is readily adaptable to Radon space
implementation. The projections of a noisy signal are computed and segmented. The
individual segments are padded with zeros and Fourier transformed. The power spectra of
the segments of the projection are averaged to derive an estimate of the power spectrum of
that one projection. The same procedure is carried out for each projection to generate the
2-D power spectrum estimate,

The Blackman-Tukey algorithm derives a spectral estimate via the Wiener-Khintchine

theorem, i.e. the power spectrum of a stochastic signal is the Fourier transform of its

LN N ":,,'



>~ .. ~- - . - ‘. ..I'“‘ -.' ).((.“‘.ﬂ K.' x~"- . . ‘. te . ‘. . N Le . .t - - - » LI - - - IS - - - - "
:
-
. -
\
4
:
n
.
® _
-39 - .
autocorrelation. For a sampled 1-0 signal, the autocorreiation is computed for a number of ,
allowed lags (shifts) and Fourier transformed. For a 2-U signal, the calculation of the 2-D y
@ )
autocorrelation makes this approach computationally expensive. However, once the -
projections have been derived, this approach can be performed in 1-D rapidly and cheaply. o
By the filter theorem, the projection of the autocorrelation is the autocorrelation of the g
@
projections. The 1-D autocorrelation of each projection can be rapidly computed, Fourier ¢
transformed, and displayed in sinogram or polar format to give an estimate of the 2-D Iy
power spectrum. .
o . . ) '
II.A.6. Linear, Space-Variant Operations +
In recent years, a considerable amount of effort has been directed at developing :j

optical methods of implementing space-variant operations, in order to broaden the
applicability of optical processing. For a review of this work, see Goodman (1981). It is
natural, therefore, for us to investigate the application of the Radon transform to such
operations. We will see that Radon-space implementation of general space-variant
operations, though theoretically possible, usually offers little if any advantage over direct
processing. For some special cases, however, the Radon approach can be very useful.

_ A general linear, space-variant operation on a 2-D function f(r) may be expressed as a

superposition integral:

" ("

g(r) = | .J d*r' f(r') h(r;r"), (30)

i
where the kernel h(r;r') can be regarded as a space-variant impulse response. Since the
superposition kernel is a function of both the input and output coordinates, and is therefore
4-D, we cannot derive unique 1~D projections of h(r;r') in the manner described by eq. (2).

We could derive a generalized projection AL(p,4;p',¢') of h(r;r') by integration over the
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input and output variables and examine the relationship between A¢ and Ap, that yields xg. o

We have already seen some cases, e.g. the Fourier and Hartley transforms, where the close 5

@ kinship of the space-variant integral kernel and the Radon kernel ailow the operations to be
directly performed in this manner. But for the general space-variant operation, we will :

instead consider an alternative treatment made by Bamier and Hofer-Alfeis (1982). They :

@ proved that 2~D space-variant operations can be considered to be a special case of 4-0 .
space-invariant convolution, i.e. . ]

3(r) = g'(r;r'=0) = [f'(r;r') **** h(r;r")]|,12g (31) :

where f'(r;r') = f(r) s(r + r'), and the operator ****® denotes 4-D convolution. Deriving .

f'(r;r') involves sampling a 4-D smeared version of f(r), and so is somewhat akin to back- 3

projection. Bamier and Hofer-Alfeis proposed a means of implementing the 4-D ;

v

convolution optically via sequential 2-D convolutions for the case of a bandlimited space- ‘

. 13
variant impulse response. By extension of the filter theorem [eq. (13)] to 4-D, the ~:.

convolution can theoretically be performed via 1-D convolutions in Radon space once the i

projections of the 4-D functions have been derived. The 4-D generalization of the .

projection operation [eq. (2)] is obtained in analogous fashion to the 3-D case (Section ‘

.B.1.), i.e. the 1-D projection of a 4-D function is generated by integration over the 3-D

volume normal to the 4-D unit vector defining the azimuth of the projection. Three angies

(a.8.y) are required to specify this unit normal. For clarity, we respecify the arguments :.

=

(r;¢') of the 4-D functions by the notation (r ), where the subscript denotes the ::

dimensionality of the space. Similarly, we define the 4-D volume element d*r = d2r d2r'.

The 1-D projection of the 4-D input function f'(r,) is therefore:

= -

P AR RN

Af(p,a,B8,v) = J J d'r £'(r,) 6[p - £y * M) . (32)

j =] ww) ~m] -
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Note that the definition of f'(r,) = f(r) §(r + r') allows some simplification of this
expression by evaluating the integral over d?r'. However, the projection of the kernel h(r,)
cannot be so simplified, in general. Extending the filter theorem [eq. (13)] to 4-D, we
have

g'(n) = R [(Ag(p,a,8,v)] =R, [Ap(p,a,8,Y) * Ap(RaB,Y)], (33)
where R, ™! js the 4~D inverse Radon transform. The desired output g(r) of the 2-D space-
variant operation is obtained by evaluation of g'(r,) = g'(r;r') at the 2-D plane defined by
' =0, Since each 1-D convolution influences every point in the 4-D convolution (and
hence every point in the 2-D output plane) via back-projection, there are no computational
shortcuts--only nonessential 4-D output. In Radon terms, mapping the 2-D input function
to 4-D space and performing a 4-D space-invariant convolution avoids the necessity of
operating on one projection of the 2-D input f(r) with multiple generalized projections of
the 4-D kernel h(r;r') to obtain one projection of the 2-D output g(r). However,
performing the forward and inverse Radon transforms of 4-0D functions are very intensive
computational processes which would require special-purpose hardware if they are to be
performed rapidly and economically. To illustrate the scope of the problem, consider that
the forward transform requires the calculation of a volume integral for each point in each
projection. For a 500 x 500 input f(r), the general space-variant kernel h(r;r') has 500" =
6.25 x 10°® data points. Calculation of each of 500* projections requires 500 volume
integrals over 500° points. The difficulties of performing the 4-DO back-projection are
similarly prodigious. As will be discussed, Barrett (1981) proposed a hybrid 3-0O Radon-
space signal processor that could be adapted to these 4-0D applications, but the addition of
one more dimension significantly complicates the data storage and manipulation

requirements. Hence, performing the general space-variant operation in Kadon space via

the 4-D convolution algorithm has no obvious advantage over direct digital processing at
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this time.

Il.A.7. Bilinear and Nonilinear Operations

A For 1-D signals, a number of processing algorithms have been developed that operate
on the signal in a muitilinear or nonlinear manner for such purposes as voice pattern
recognition and echo deconvolution. Examples inciude coordinate-frequency

* representations (e.g. sliding=window spectrum, Woodward ambiguity function, Wigner
distribution function (WDF)), triple correlation (Lohmann and Wirnitzer, 1984), and the
cepstrum (Childers et al., 1977). The success of these algorithms for certain 1-D signal-

L

processing tasks has stimulated research into 2-D analogs, but these are usually
computationaiiy intensive and hence not often implemented digitally. In some cases,

optical processing has been profitably applied, notably for coherent optical computation of

the Wigner distribution function of 2-D data (Bamier and Glunder, 1983). Those operations
based on Fourier transforms (e.g. WDF) or on nonlinear point processing (e.g. cepstrum)
may be implemented in Radon space. Using a fast optical Radon transformer and 1-0O
analog or fast digital processing, the 2-D operation may be performed profitably. An
example of such an operation is coordinate-frequency representation of 2-D functions.

A simultaneous representation of the coordinate and frequency distribution of the
energy in a nonstationary signal has proven useful in a number of applications, e.g. radar
signal processing (Woodward, 1953) and speech processing (Oppenheim, 1970). Such a
representation is intended to give a picture of the “local® frequency spectrum of the signal,
i.e. the frequency content of the signal arising from a particular region of coordinate
space. Obviously, such a picture requires twice as many dimensions in the representation
space as in the signal space. Several such representations have been proposed. The most
direct path to a local spectrum is the complex spectrogram (CS), or sliding-window

spectrum, where a constant window function is shifted over the signal to specify the region
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to be Fourier analyzed, i.e. for a 1-D signal f(t), the complex spectrogram ng is defined
as:

Sgtiv) =) o) 8" (t' - e 2TV, (34)

-

This representation is easily computed by coherent optics but the output is affected as
much by the window g(t) as by the input f(t). This potential problem can be alleviated by
using a self-windowed representation, such as the Wigner distribution function (WOF),

which is commonly defined as:
[. L] )
We(tiv) = | dt f(t e Ez.) £ (¢ - 32., e-2mivt!
) -~

= [f(t . 52-> £ (t - ti-)] (35)

t'-o\)l

where ?‘is the 1-D Fourier operator transforming coordinate t' to frequency v. This
t'ev

representation was introduced by wigner (1932) and introduced into optics by dastiaans

(1978). Another closely related function is the Woodward ambiguity function (AF), which is

defined as:
Ag(vit') = J de f(t + %') f.(t - .ti‘.) e-2Tivt
tl » tl
= g\’x [f(t ML PR U -2')]- (36)

it is related to the WDF through a double Fourier transform. Several optical methods for

computing these representations for 1-D functions have been introduced (Bartelt et al.,

1980) (Brenner and Lohmann, 1982) (Eichmann and Dong, 1982) (Athale et al., 1982).
Generation of such representations for 2-D functions presents another problem, since

the resultant is a function of four variables, Generaily, 2-D slices of the 4-D
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representation are produced. Real input functions are assumed, eliminating the need for N
conjugating the shifted function. In addition, the computation of the bilinear product

° function is expensive if done digitally, increasing the motivation for optical processing. Of
the representations listed, the WDF is most readily computed optically, since the Fourier
transform of the product function is over the shifted coordinate variable . Optically, the

® product function is generated by passing coherent light twice through a transparency of the f_
signal, either by reflecting an image of the transparency onto itself, by overlaying copies
(Bamler and Glinder, 1983), or by imaging onto a copy (Conner and Li, 1985). The bilinear :‘

v product function is then Fourier transformed to generate one slice, Wg (Fg;p ). Shifting the
position of the input functions generates 2-D slices for different values of r,. X

Computation of the WDF can also be performed in Radon space by taking projections of

© the optically derived bilinear product and Fourier transforming in 1-D. Easton et al. (1984) "
demonstrated generation of 1-D central slices of the squared modulus of the 4-D WUDF and ¢

later used the 1-D SAW complex Fourier transformer to produce bipolar 2-D slices of the l.\-

¢ 4-D WDF of a 2-D real function. An example is shown in Figure 21,
11.8. Operations on 3-D Signals

Earlier, we stated that we would emphasize processing of 2-O signals via a :.

i tomographic transform. However, it may be even more profitable to use the Radon :
transform to reduce 3-D problems to 1-D operations, since digital data manipulation is even ..
more time-consuming in that case. Two kinds of 3-D problems will be discussed: 3-D ::

g purely spatial data, and 2-D spatial data with a third dimension (e.g. time or spectrum). "
We shall briefly describe the required operations, and suggest potential applications. ::
11.B.1. 3-D Spatial and 2-D Spatial + 1-D Temporal Signals N

© In Section 1.B.1. we described the decomposition of a 3-D function into a set of 1-D -
projections by integration over parallel planes. The projection operation is identical to eq. .:f_

e
. ,
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(2), except that the delta function reduces the volume integral to a set of planar integrals.

Given a 3-D function f(x,y,z), we wish to integrate the function over a set of planes

. normal to the 3-D unit vector A. Two angles are required to define the normal to a plane,
commonly the azimuth ¢ and the colatitude 9. The displacement of the parallel plane from
the origin is again defined as p, so that A = p/p. The 3-D projection operation can then be

g expressed:

L) a [C
A(p,$,8) = [ J J d'r f(r) §(p - r*n) . (37)
i -l -l -
o

The 3-D version of the central-slice theorem states that the 1-0 Fourier transform of a
projection of a 3-D function yields one line through the origin of the 3-D Fourier
transform,

The 3-D back-projection operation is again very similar to the 2-D case, but now the
1-D function is smeared over the original projection plane normal to A. Repeating this for
all directions i generates a 3-D summation image b(r). In the filtering step, however,
there is a significant qualitative difference between the 2-D and the 3-D cases. Recall

that in 2-D, the Fourier space filter for the 1-D projection is H(v) = |y|, and the

& coordinate space counterpart is h(p) = -2—;1;5;, which falls off slowly with p. The
corresponding filter for the inverse 3-D Radon transform is H(g) = 2702, where g is the

magnitude of the 3-D spatial frequency vector (§,n,z) (Barrett, 1981). The coordinate

space filter is easily found, since multipiication by -(2723?) in the frequency domain

L 0]

corresponds to taking the Laplacian in the space domain (Gaskill, 1978). The expression for

the inverse 3-D Radon transform is therefore:

1
o f(r) = o 93 [b(r)] (38)

where b(r) is the 3-D summation image. Filtering for the 3-D inverse transform is
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therefore a local operation, in contrast with the 2-D case.

Barrett (1981) proposed a hybrid 3-D Radon-space signal processor composed of an
optical system to derive the projections, digital storage, 1~D signal processing, and optical
back-projection. The input function was assumed to be a collection of 2-D image frames,
i.e. a movie film, where each frame is assumed to be a 'slice’ through the 3-D object. All
of the 3-D versions of the operations described in section Il.A. could be performed by this
system, including 3-D Fourier transformation and convolution. Such a system should be
capable of performing 3-D complex Fourier transforms on 500° data points in less than 4
hours. A digital system common at the time (PDP 11/34 + array processor) would have
required two days.

Such a sys..m can also be applied to 2-D spatial + 1-D temporal signais (e.g. movies)
for joint spatial/temporal filtering. A possible application would be to steilar speckle
interferometry, allowing the averaging filter impulse response to vary temporally. Such
operations are feasible by digital means, but are expensive and time-consuming.

11.B.2. 2-D Spatial + 1-D Spectral Data

Optical detection and display systems are best-suited to 2-UD data formats. In white-
light images, a third dimension of information has been encoded in the spectrum of each
image point. The Radon transform provides a mechanism by which we may use 2-D
detectors, signal processors, and display devices to manipulate the spectral data while
retaining the ability to regenerate the image. For exampie, if we have a white light 2-D
image, we can derive the set of 1-D projections of that image as described in section
I.C.1. The 1-D projections can be spectrally dispersed in the orthogonal dimension,
allowing 2-D filtering to be performed on the joint spatial/spectral projection. The 2-D
filtered signal can be ‘inversely dispersed®, to rederive spectrally-filtered 1-D projections,

and a 2-D filtered image then reconstructed via the inverse Radon transform, Such a




- 47 -
system could be used for spectral matched filtered imaging (Lohmann and Maul, 1981) (Yu,
1984) or imaging spectroscopy.
Ill. Summary and Conclusions

we have discussed the reduction of 2-D signal processing operations to 1-D operations
via the Radon transform for the purpose of gaining flexibility, precision, and mechanical
advantages over direct optical signal processing. This technique is most readily applicable
to operations based on Fourier transforms and convolution. Several optical systems were
discussed that are capable of performing the forward and inverse dimensional
transformations, and a number of applications were considered, some aiready demonstrated
and some postulated. The authors believe that many of the fruits of this technique have
yet to be harvested, and we encourage workers in signal processing to investigate the
utility of projection operations in their own applications.
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Two-dimensional complex Fourier transform via the

Radon transform

Roger L. Easton, Jr., A. J. Ticknor, and H. H. Barrett

A hybrid system has been constructed to perform the complex Fourier transform of real 2-D data. The
system is based on the Radon transform; i.e., operations are performed on 1-D projections of the data. The
projections are derived optically from transmissive or reflective objects, and the complex Fourier transform is
performed with SAW filters via the chirp transform algorithm. The real and imaginary parts of the 2-D
transform are produced in two bipolar output channels.

). Introduction

The utility of the 2-D Fourier transform as a tool for
signal processing is well known. Its computation is
usually performed digitally or by coherent optics.
Other techniques have been demonstrated to compute
the 2-D transform using incoherent illumination.l-9
Each of these methnds has inherent advantages and
disadvantages. Digital computation on a general pur-
pose computer is precise but slow, even with the FFT
algorithm. In addition, it can suffer from aliasing
problems if the data are inadequately sampled. The
use of special purpose hardware, such as array proces-
sors, can speed the process considerably, but digital
techniques cannot as yet approach video rates (30
frames/sec) with large arrays. Optical methods to
compute the Fourier transform have been developed,
but each has disadvantages limiting its utility. We
have constructed a system capable of performing com-
plex Fourier transforms of 2-D input data at video
rates. The system is based on tae Radon transform
and the chirp Fourier transform. An optical scanner
produces 1-D projections of the input data, which are
Fourier transformed in 1-D by a surface acoustic wave
chirp transformer. The real and imaginary parts of
the transform are produced simultaneously in separate
channels. A single projection isderived in 10 usec, and
the complex transform is produced <30 usec after
commencement of the scan. By the central slice theo-
rem, these 1-D transforms are equivalent to lines

The authors are with University of Arizona, Optical Sciences
Center, Tucson, Arizona 83721.
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through the 2-D transform. When the transforms are
plotted in polar format on CRT screens, the real and
imagination parts of the 2-D Fourier transform of the
object are displayed. The system can be used with
either transmissive or reflective input data, and the
illumination may be incoherent. We have previously
reported on the application of this system to computa-
tion of power spectra,'® but results of 2-D complex
transformation are given here for the first time.

il. Optical Fourier Transformation

Fourier transformation by coherent optics has been
the basis of optical processing for many years and
found use even before invention of the laser. Coherent
optical systems can compute the squared modulus of
the Fourier transform virtually instantaneously but
are limited in performance by speckle noise and by the
available input transducers (spatial light modulators).
Using the proper optical configuration, it is easy to
show that the correct amplitude and phase of the
transform are produced at the output plane (limited by
aberrations in the transform lens), but the necessity of
square-law detection makes separation of the ampli-
tude and phase components of the transform (or, near-
ly equivalently, of the real and imaginary parts) diffi-
cult.

A considerable body of work has been done on pro-
duction of the Fourier transform by incoherent optics
with the aim of gaining significant advantages over
coherent optics in output noise and flexibility of inputs
while retaining the speed advantage over digital com-
putation. Katyl! used a temporally incoherent source
in the coherent optics format with appropriate disper-
sion correction. The requirement for spatial coher-
ence remains, and derivation of the complex transform
is difficult. Other systems use geometric shadow-
casting to image the input on a reference mask of
known spatial frequency and phase. The integrated

15 November 1985 / Vol. 24, No. 22 / APPLIED OPTICS 3817




light at one position in the output plane is proportional
to the Fourier coefficient at one spatial frequency.
The technique of Mertz,? later refined by Richardson,?
produced the reference masks via the moire pattern
created by two Fresnel zone plates. By sequential
replacement of the second zone plate with one with
spatial frequencies in quadrature, Richardson was able
to compute the cosine and sine transforms separately
giving the real and imaginary parts of the Fourier
transform. This implementation can be analyzed as
the chirp algorithm for Fourier transformation, which
decomposes the correlation with the Fourier kernel
into multiplication and convolution with quadratic
phase factors as described later in this paper. Leiferet
al.* used a stored reference mask with a limited range
of spatial frequency and orientation in a shadow-cast-
ing correlator for alphabetic character recognition. In
all these systems, the shift required for correlation of
the input with the reference spatial frequency mask is
accomplished by optical parallax, and no physical
movement is required. The maximum spatial fre-
quency response of these systems is limited by vignett-
ing of the reference masks and by diffraction (since
geometric optics is assumed). The vignetting problem
may be solved by using a moving correlator at the
expense of slower calculation and increased complex-
ity. Even here, the scanning need not be physical
motion if an imaging detector is used.®* However, the
geometric optics assumption severely limits the spatial
frequency response of these incoherent correiation
systems to arrays of 100 X 100 pixels or so. In addi-
tion, the spurious terms present in the vutput plane
decrease contrast and reduce output dynamic range.

Other authors have investigated different avenues
to Fourier transform computation. Recent work by
Tai and Aleksoff® has demonstrated production of
compiex transforms of incoherently illuminated data
by selection of the proper output term from a grating
interferometer. This approach is limited to 1-D data,
however. Xu et al.” have produced the complex trans-
form of incoherently illuminated 2-D data occupying
one-half of the input plane. A symmetric object is
synthesized by reflection through the origin and pro-
cessed through two illumination channels polarized
orthogonally. The system performs well, but the re-
striction on input format limits its utility. George and
Wang? also have performed Fourier cosine transforma-
tion of transmissive or reflective objects in incoherent
light by synthesis of a symmetric object followed by an
achromatic optical Fourier transform. A double im-
age of the input is produced interferometrically, and
the output of the optical system is the cosine transform
on a bias. Adjustment of the interferometer allows
separate generation of the sine transform. The output
signal is detected with a photodiode array for later
digital manipulation. The bias could be subtracted
electronically or interferometrically. They report sys-
tem response to 20 cycles/mm, and their results agree
very well with calculations. This system has the po-
tential disadvantage of nonsimultaneous generation of
the cosine and sine transforms.

3818 APPLIED OFTICS / Voli. 24. No. 22 / 15 November 1985

Glaser et al.? have implemented the chirp transform
algorithm optically to produce the complex transform.
A holographic filter is used to perform the convolution
with the quadratic phase factor, thus requiring a tem-
porally quasi-coherent source. Spatial coherence is
not required. The optical output is a spatial carrier
modulated by the complex transform, from which the
real and imaginary parts may, in principle, be derived
by digital demodulation at the cost of temporal pro-
cessing capacity.

. Radon-Fourier Transformer

All the 2-D Fourier transforming systems discussed
above are restricted in utility by limitations on speed,
format of input and/or output, space-bandwidth prod-
uct, or dynamic range. Many of these systems have
proven useful in some applications, but none truly fills
the need for rapid calculation of the complex 2-D Fou-
rier transform with large space-bandwidth product.
Using a different principle, we have constructed a sys-
tem which can potentially compute complex Fourier
transforms of large arrays at video rates. The complex
transform is generated as cosine and sine transforms,
i.e., the real and imaginary parts of the transform.
The two outputs are obtained simultaneously. Opera-
tion is based on the Radon transform,!! which decom-
poses a function of M-dimensions into the complete set
of 1-D projections by integration over M — 1 dimen-
sions. For the 2-D case, projections are obtained by
integration over sets of parallel lines. The primary
theorem of the Radon transform states that a function
can be reconstructed from the complete set of its pro-
jections and serves as the operating principle of medi-
cal computed tomography. The Radon transform has
also been shown to be useful in general signal process-
ing, including pattern recognition,!*13 image filter-
ing,'415> bandwidth compression,'7 computation of
the Wigner distribution function,'® and Fourier spec-
trum analysis.IO.IQ.ZO

The utility of the Radon transform for signal pro-
cessing is due to the central-slice, or projection-slice,
theorem, which states that the 1-D Fourier transform
of a 1-D Radon projection yields one line through the
2-D Fourier transform of the 2-D function. The 1-D
transform passes through the origin of 2-D Fourier
space, and its orientation is determined by the orienta-
tion of the lines of integration. Since systems exist
that can rapidly compute 1-D Fourier transforms (e.g.,
CCD, SAW, or AO), adopting the Radon transform
approach makes possible rapid computation of the 2-D
Fourier transform,

The system for producing the Radon transform of
the 2-D data has been discussed previously.!0.13.20
Suffice it to say that the projections of the 2-D distri-
butior of intensity transmission (of a transparency) or
refl-ctance (for reflective objects) are derived by pro-
jec.ang aline of light on the input plane and integrating
the light transmitted or reflected with a detector. The
output of the detector is proportional t» the line inte-
gral of transmission or reflectance. Sweeping the line
of light perpendicular to itself across the input data
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produces a temporal signal proportional to one line-
integral projection. Rotation of the azimuth of sweep
with a prism allows production of the complete Radon
transform as a sequence of 1-D temporal signals out of
the detector. For obvious reasons, this optical system
is termed a flying-line scanner.

From the central-slice theorem mentioned above,
the 1-D transform of a projection is one line through a
polar plot of the 2-D transform. Farhat et al.?! have
adapted both coherent optical transformation and
shadow-casting correlation to perform the 1-D Fourier
transformation of Radon-transformed data. Their in-
coherent transformer produces full complex trans-
forms of complex input data by using two-color chan-
nels. We have taken a different tack, disposing of
optical Fourier transformation altogether, and instead
implementing the chirp Fourier transform algorithm
with surface acoustic wave filters. The chirp trans-
form results from a decomposition of the Fourier ker-
nel:

2
exp(—2xirt) = {exp[-ir(—;-) } x {exp{—ix(8t)%}

x {exp [ir (é - 6:)2]}. (1
Thus the Fourier transform may be written

F») = I " A(t) exp(=2xivt)dt = exp [-i:(é—)’]

+*

X J:.lf(t) exp{—ir(4t)?]} X exp [i: (% - m)z] dt

= [exp{—ix(8t)]]
X ({(¢) exp(—ix(8t)7]} « explix(B)DN _,a, @

where * denotes convolution. The complex exponen-
tials are linear FM signals, i.e., the frequency varies
linearly with time, and have been named chirps by the
radar community. They are also called quadratic
phase factors for obvious reasons. The instantaneous
frequency of the positive complex quadratic phase
term exp[+ix(8¢)?] at time ¢, is

1
2x

which increases with t,. Henc?, it is called an upchirp,
while the negative exponential is a downshirp. Using
the three chirps, Fourier transformation can be broken
down into the following steps:

(1) multiplication of the signal by exp(—ix3%t?), a
downchirp;

(2) convolution of the product with an upchirp,
exp(+ing2t?);

(3) multiplication of the filtered signal by a down-
chirp, exp(—ir32¢2).

The parameter »52 in the chirp signal is called the
chirp rate and is the same for all three chirps. The
temporal output signal is a scaled version of the Fouri-
er transform of the temporal input signal with the

do 8%,
xI'(l.l,‘) -+ 7

temporal frequency related to the output temporal
coordinate via v = §2t. If only the modulus of the
transform is required, the third step can be deleted.
This analysis assumes that the chirps are complex and
of infinite length.

One way to obtain the chirp impulse responses nec-
essary to implement the transform is via surface acous-
tic wave (SAW) chirp filters.?2-2¢ A SAW filter con-
sists of a piezoelectric crystalline substrate on which
two aluminum interdigital transducers (IDTs) have
been deposited. When a signal is applied to the input
IDT, the electric field across transducer fingers of op-
posite polarity generates a deformation of the crystal
surface via the piezoelectric effect. The deformation
travels along the crystal surface as a sound wave. At
the output IDT, an electronic signal is regenerated
from the sound wave by the inverse piezoelectric inter-
action. By proper design of the separations and over-
laps of the fingers in the IDTSs, any of a wide variety of
impulse responses can be generated. Fora chirp filter,
the separations of the fingers are varied to obtain an
impulse response h(t) whose frequency increases or
decreases from some initial carrier frequency wo at rate
a, i.e., of the form

el (o]

Again, the instantaneous frequency of the chirp at
time ¢, is

1 d at? wo x at, at,
- X — (“Ut —_— - + —-
i e dt( 3 )'(c-t.) 2r 05 2x

As before, the positive term is called an unchirp. Real-
istically, the filter must have a finite temporal re-
sponse, so the cosine function must be windowed by a
function with compact support, e.g., a Rect function or
a Hamming window. For chirp Fourier transforma-
tion, the premultiplication and postmultiplication
chirps can be generated by applying an impulse input
to SAW chirp filters of the proper sign (i.e., upchirp or
downchirp). The convolution is performed by apply-
ing the signal to a similar filter. Itis important to note
that the SAW chirp filter impulse response is a real
function of the form A(t) cos(wt + at?), not the com-
plex exponential seen above. The function A(¢) is an
apodization of the chirp, necessitated by the finite
output signal length, and w is the initial angular fre-
quency of the chirp. The chirp transform algorithm
may still be implemented,? but the steps now become
(1) premultiplication by a downchirp

Rect(—t-—l>x cos(u_ t _a_tz) .
r. 2 2
(2) filter this signal with ‘mpulse response

h(t) = Rect.[L - %] X cos (u, t+ #) .

Te

-

(3) postmultiply the filtered signal by two up-
chirps separately:
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t-¢ 1 at?
(a)Rect( T —E)Xcoo(u.H»—z-)
t—=¢ 1 at®! *
(b) Rect(—r:——a))(co.(u,t‘ﬁ-——z ~2—)
Rect {{=F — L) x e+
e 2 sinl w, ’

(4) low-pass filter both outputs of step (3). The
terms r., and 7- represent the temporal width of the
upchirp and downchirp, respectively, and are also
called the time dispersions of the chirps. Similarly, .
and w- are the initial angular frequency of the upchirp
and downchirp.

The output temporal frequency is related to the
temporal position in the output signal by the relation

r= (0, = w_+ at)/2r. 3

Since the carrier frequencies in SAW filters are in
the rf regime (w ~ 15-300 MHz), multiplications can
be performed in rf mixers. The discrepancy in the sign
of the two postmultiplication SAW chirps relative to
that in the complex chirp algorithm given above resuits
from rf double-sideband mixer multiplication. Such
mixers yield product terms as modulations on carriers
at the sum and difference frequencies of the original
carriers. That is, given two signals A(t) and B(¢) mod-
ulating carriers at angular frequencies w, and ws, re-
spectively, the action of the rf mixer is to produce an
output:

Alr) cos{w, t) X B(¢) cos(ub t)= M

X |cos{(w, + wy)t] + cosf(w, — wp)t]). (4)

The low-pass filter selects the difference frequency
term, and so the sign of the postmultiplication chirp
must be the same as that of the convolution filter to
obtain demodulation. The signal postmultiplied by
the cosine upchirp is the real part of the transform,
while that multiplied by the sine upchirp is the imagi-
nary part of the transform.

For maximum time-bandwidth product in the out-
put signal, the requirements on the chirps are that the
time dispersions of the premultiplication and the con-
volution chirp be related by r_ = r,/2, and that the
bandwidth of the convolution chirp be twice that of the
multiplication chirps.? The two outputs are propor-
tional, respectively, to the real and imaginary parts of
the Fourier transform within a time window (7,/2 < ¢t
< r,). The corresponding spectral window spans
temporal frequencies

< ar,

, (m52).

The rectangular finite-length window of the convolu-
tion filter has the effect of convolving the spectral

components with a sinc function, which limits the
number of resolvable frequencies in the spectrum to
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Fig. 1. Schematic of the 1-D SAW complex Fourier transformer.
The temporal signal f(¢) from the photomuitiplier in the flying-line
scanner is proportional to one projection. The impulse response of
the SAW filters is h.(¢). The microcomputer controller sends a
trigger signal to the digital delay generator, which in turn produces a
1-nsec pulse that is applied to the downchirp SAW filter. The
resuiting impulse-response signal 2_(¢) is multiplied by the incom-
ing projection signal in a rf mixer. The product signal is applied to
the upchirp SAW filter, and the output goes to the signal-input port
of the rf phase comparator. After a delay of 14 usec (1-nsec resolu-
tion), the digital delay generator outputs a second l-nsec pulse,
which is applied to the postmultiplication SAW filter. An rf phase
shifter at the SAW filter output allows fine adjustment of the post-
multiplication timing. This signal is applied to the reference port of
the phase comparator. After low pass filtering, the in-phase /
output of the phase comparator is proportional to the real part of the
Fourier transform F(v) (i.e., cosine transform) of the input signal
f(t). Similarly, the output of the quadrature port @ of the phase
comparator is proportional to the imginary part of F(»), (i.e., sine
transform).

one-fourth of the time-bandwidth product of the con-
volution filter.23 SAW chirp filters with other window
functions (e.g., Hamming) are available if smaller side-
lobes are desired in the output signal. If only the
squared-modulus of the Fourier transform is required,
square-law envelope detection can be substituted for
steps (3) and (4). This is the algorithm we have used
previously to perform 2-D spectrum analysis in Radon
space.!0

The complex transform algorithm was implemented
as shown in Fig. 1 using SAW chirp filters from Ander-
sen Laboratories (models DS-120-10-20-251A and
-252A), which have bandwidths of 10 MHz, maximum
time dispersions of 20 usec, and a resulting time-band-
width product of 200. The chirp rate a = 2x X 10
MH2z/20 usec = = X 1012 Hz2. The filter windows were
unweighted. A flying-line scan, producing one Radon
projection, is made in 10 usec and is synchronized with
the signal driving the premultiplication impulse gener-
ator so that the center of the scan is mixed with the
center of the premultiplication downchirp. This
time-gates the premultiplication signal for a maximum
system time-bandwidth product. After filtering in
the upchirp SAW, the signal is coherently demodulat-
ed by the postmultiplication upchirp. To obtain 40
dB of rejection of the signal from one channel of the
transform from the other channel, the time of the
premultiplication chirp impulse must be synchronized
to the postmultiplication impulse to an accuracy of




better than 100 psec.2 The timing interval between
impulse inputs to the premultiplication and postmul-
tiplication chirps is the value ¢’ in step (3). A digital
delay generator is used to provide the impulse to the
postmultiplication chirp filter with temporal resolu-
tion of 1 nsec. More precise timing is provided by
shifting the phase of the postmultiplication chirp with
a continuously adjustable rf hybrid phase shifter. The
demodulation is accomplished in an rf phase compara-
tor, a four-port device which produces in-phase and
quadrature mixed signals from an input signal and
reference. It may be thought of as a combination of a
signal splitter, a quadrature hybrid, and two double-
sideband mixers. The filtered signal is split and
mixed with in-phase and quadrature components of

U R N
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Fig.2. Performance of the SAW chirp complex Fourier transform-
er. In each of the four cases shown, the top trace is the signal from
the flving-line scanner, i.e.. a single projection of the 2-D input. The
second and third traces are the cosine transform and sine transform,
respectively, produced by the SAW chirp transformer. The traces
on the right-hand side are a computer simulation of the same signal.
The object was a grating of 25% duty cycle in a circular aperture. In
the first case, the grating was centered in the aperture creating a
symmetric signal whose Fourier transform is purely real. In the
uther three cases. the grating was translated relative to the circular
aperture giving an asvmmetric signal with a complex transform.
Each horizontai division in the oscilloscope traces represents 5 usec.
indicating that the complete transform is computed within 30 usec.

the postmultiplication chirp. After low-pass filtering
in each channel, the in-phase signal is the bipolar
cosine transform, and the quadrature signal is the bi-
polar sine transform (each within the frequency win-
dow and convolved with the sinc function due to the
finite convolution window as described above).

Using the SAW filters described, the chirp trans-
former resolves fifty temporal frequencies in the win-
dow (|v| < 2.5 MHz). When the output of the flying-
line scanner is applied to the SAW chirp Fourier
transformer, the spatial frequency scaling depends on
the scanning speed. Typically, we scan a 25-mm aper-
ture in 10 usec, giving a spatial frequency range of +1
cycle/mm with fifty resolvable points. By scanning a
10-mm aperture in the same time, the spatial frequen-
cy response is £2.5 cycles/mm. This by no means is
the limit of a SAW chirp filter or optical scanner tech-
nology. Using reflective-array SAW chirp filters
(RACSs), transformers capable of resolving 3600 points
within a 60-usec output window have been reported.2’
Were we to use this chirp transformer and scan a 30-
mm diam aperture in 30 usec, we would obtain 900
resolvable points in a spatial frequency range of +15
cycles/mm. :

The performance of the complex Fourier transform-
er for a 1-D signal is demonstrated in Fig. 2, where the
output is compared to a computer simulation. A grat-
ing (75% clear, 25% opaque) was placed in a circular
aperture of 20-mm diameter in the flying-line scanner.
The azimuth of scan was oriented so that the line of
integration was parallel to the grating lines. The grat-
ing was mounted on a translation stage so that it could
be shifted within the circular aperture. Four cases are
shown for both the actual and computed outputs. In
each example, the top trace is the output of the flying-
line scanner, i.e., the Radon transform of the object for
one azimuth. The second and third traces are the
cosine and sine transform outputs of the complex Fou-
rier transformer, i.e., one line through the 2-D real part
and imaginary part, respectively, of the Fourier trans-
form of the original object, via the central-slice theo-
rem. The scanning time is 10 usec, and the two trans-
forms have been output within 30 usec after the
beginning of the flying-line scan. In the first case, the
grating is centered in the aperture resulting in a sym-
metric input to the Fourier transformer. The Fourier
transform of a symmetric object is purely real, and
hence the sine transform vanishes, as shown. Also
note that the cosine transform is bipolar and symmet-
ric. Inthesucceeding three cases, the grating is trans-
lated in the aperture, resulting in an asymmetric input
to the complex transformer and a nonvanishing bipo-
lar and antisymmetric sine transform. The actual
transformer output agrees very well with the computer
simulations.

To produce the complex 2-D Fourier transform, the
central slice theorem says that it is merely necessary to
display the 1-D transforms of the projections in the
proper polar format. However, for discrete uniform
sampling along both the azimuthal and radial axes, the
Fourier space will be densely sampled near the origin
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Fig. 3. Two-dimensional complex Fourier transforms of a circular
aperture. The object was a single circular aperture of 1.0-mm
diameter, as shown at top. The letters denote the ongin of coordi-
nates (i.e., the optical axis) for each case. The display was biased up,
so that zero amplitude is the brightness level shown in the imaginary
part of (A). The brightest areas represent the most positive ampli-
tude of the transform, and the darkest areas represent the most
negative amplitude. (A) With the aperture centered at the origin,
the transform is purely real. (B), (C) The aperturs was transiated
from the optic axis by ~1.4 and 2.4 diameters, respectively, produc-
ing fringes due to the constant phase term.

and sparsely sampled at the high spatial frequencies.
The function so obtained is equivalent to [F(p)]/14l,
where p is the 2-D frequency vector and F(p) is the 2-D
Fourier transform of the 2-D input function f(r) =
f(x,y). The radial spatial frequency vector p is always
non-negative, but we can also consider a radial fre-
quency vector v, which is bipolar. To counter the 1/
weighting, it is necessary to multiply the Fourier trans-
former output by [v| before display. This V-shaped
function is produced electronically by passing a ramp
function through an absolute-value amplifier. Since
the SNR of the Fourier transformer generally de-
creases with increasing frequency, the V function is
rolled off by current-limiting the output of the V gen-
erator. Forasignal on anrf carrier, (i.e., the generated
magnitude of the Fourier transform that is output by
the convolution chirp filter), the multiplication by |v|
is easily done in a rf mixer.!0 Multiplication of the
coherently demodulated signal is somewhat more dif-
ficult in the frequency range of interest (up to 2.5
MHz), which is higher than most analog multiplier
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Fig. 4. Two-dimensional complex Fourier transforms of a grating
in a circular aperture. The spatial frequency of the grating was 1.5
cycles/mm, with a duty cycle of 80% and the aperture diameter was 6
mm. (A) Cosine transform with the object centered on the optical
axis as shown. The transform is even, and the Airy patterns of the
circular aperture at the +1 orders of the grating are clearly seen. (B)
Cosine transform after translating the object by one-half of a grating
cycle. The linear phase term resulting from the translation has
inverted the phase of the Airy patterns. (C), (D) Sine transform of
the object after translation by £one-fourth of a grating cycle, respec-
tively, relative to (A). The transforms are odd, and the Airy pat-
terns at the +1 orders are out of phase. (E), (F) The aperture
diameter was reduced to 2.5 mm, and the center was translated
relative the optic axis by a sufficient distance (2 mm) so that several
cycles of the linear phase are visible within the central disk of the
Airy pattern. (E)is the real part of the transform and iseven. (F)is
the imaginary part and is odd. Note that the translation was in
different directions in the two cases, so tha: the fringe direction
differs.

modules can handle and not high enough for rf mixers.
In their stead, we employed the Motorola balanced
modulator-demodulator integrated circuit (MC1496)
to multiply the transformer output by|v|. The bipolar
signal can then be applied to the z axis of a CRT in one
of two ways: the signal can be thresholded at ground
to display the complex transformation in four parts
{positive and negative real and positive and negative
imaginary), or the bipolar signal can be biased up to
display the complete real or imaginary transform at
one time. Since the 1-D cosine and sine transform
signals are available simultaneously, they can be dis-
played simultaneously on separate CRTs.

To display the transform in the polar format, we
have used the same system reported previously.!® The
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Fig.5. Two-dimensional complex Fourier transforms of two circu-
lar apertures. The diameter of the apertures was 1 mm with their
centers separated by 5 mm, as shown at top. Again the letters
denote the position of the optical axis in each case. (A) Cosine
transform with the optic axis centered on the object’s axis of symme-
try. Note the phase change as a fringe passes-from the central lobe
of the Airy disk to the first ring. The faint fringes in the imaginary
part of the transform are due to wobble in the image rotating prism.
(B) The optic axis was located 1 mm above the symmetry axis
producing fringes perpendicular to those from the double aperture.
The cosine transform is even, and the sine transform is odd. (C) The
optic axis was located on the symmetry axis but displaced from the
center of symmetry by 1| mm muitiplying the fringes by a linear
phase term of lower frequency.

scan azimuth is rotated by an image-rotation prism via
a stepper motor resolving 200 steps. The maximum
angular resolution in the transform is /100 rad. A
bipolar ramp function is generated and weighted in
two channels by the sine and cosine value of the azi-
muth angle of the scan. The resulting outputs are
applied to the x and y deflections of the CRT scanning
spot, which produces a line scan across the screen at
the appropriate angle. After completion of the scan,
values of the sine and cosine of the new angle are read
out of a lookup table for the next scan. The scanning
spot is timed to reach the center of the screen when the
zero-frequency output of the Fourier transformer is
applied to the z axis of the CRT. The complete 2-D
transform can now be generated in ~0.1-sec, limited by
the rotation rate of the stepper motor. To allow trans-
formation at video rates, the azimuth of the Radon

RelFIE.() mn{FESH

Fig.6. Two-dimensional complex transforms of a reflective object.
A beam splitter was introduced into the flying-line scanner to direct
the reflected line onto the detector. Fourier transformation and
display were performed as before. The object was a grating in a
circular aperture of 6-mm diameter, as in Fig. 4. The main features
of the transform are easily seen, i.e., the location and phase of the
Airy patterns on the first orders of the grating spectrum. The
signal-to-noise iy less than in the transmissive case due to the lower
reflectance and iower modulation in reflectance. The real and
imaginary parts of the Fourier transform of the object centered on
the optical axis are shown in (A). Since the object is symmetric in
this case, the imaginary part of the transform vanishes. (B) The
object was translated by one-half of a grating cycle.

transform would have to be rotated at 30 Hz, corre-
sponding to an easily obtainable prism rotation rate of
7.5 Hz = 450 rpm. Indeed much higher rates have
been reported with excellent image quality.®
Complex transforms obtained with this system at a
rate of 2.5 frames/sec are presented in Figs. 3-6. In
each case, the positive part of the Fourier transform is
presented; i.e., areas of the transform with amplitude
greater than zero are bright, while those areas with
amplitude less than zero are dark. Note the difference
in the usual presentation of the squared magnitude of
the Fourier transform, where areas with amplitude
both greater than or less than zero are bright, and the
zero-crossings are dark. In Fig. 3, the object was a
circular aperture 1.5 mm in diameter. Inthe first case,
the aperture was centered in the flying-line scanner
resulting in a symmetric object. The Fourier trans-
form is purely real, and the cosine transform is the
well-known Airy pattern. If the aperture is translated
in the scanner so that the object is no longer symmet-
ric, a linear phase term in the transform appears as
fringes in the output: the greater the shift, the larger
the frequency of the linear phase. In Fig. 4, the object
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USING SAW FILTERS TO PROCESS TWO-DIMENSIONAL DATA BY MEANS OF THE RADON TRANSFORM

Roger L. Easton, Jr., Harrison H. Barrett, and Anthony J. Ticknor

Optical Sciences Center
University of Arizona
Tucson, Arizona 83721

Abstract

It is well known that many mathematical opera-
tions on data sets of dimension two or higher may
be performed by reducing the data to one-dimen-
sional projections by means of the Radon transform.
This is the governing principle of medical computed
tomography. In this paper, we describe a systeam
that performs the Radon transform of two-dimen-
sional images and uses SAVW devices to perfora the
data processing. Two processing operations are dem-
onstrated: Fourier transformation of the data by
means of the chirp transform, aud convolution of the
data with a stored filter functiom by means of a
SAW correlator. After processing, a custom SAW
filter and an optical system are used to recon-
struct the processed {mage in two dimensions. The
resolution of the processor {s currently limited by
the SAW devices (50 points for the chirp trans-
former, 300 for the convolver), but better davices
are available. This system is capable of performing
two-dimensional Fourier transforams at video rates
(30 frames/s), which is auch faster than current
digital systems. An extension of the system to pro-
cess three-dimensional data is described.

Introductiom

The Radon transform has received much atten-
tion in the scientific community since the invention
of x-ray computed tomography (CT) in the 1960's. It
has found application in such diverse disciplines as
astronomy, nuclear magnetic resonance, and geophy-
sics. The mathematics of the transform were der-
ived and published by Johanan Radon {a 1917 (1),
where he proved that a mathematical function can be
reconstructed from the complete set of its line~in-
tegral projections. In the case of CT, measured x-
ray transmissions are simply related to the line in-
tegral of the x-ray absorption coefficient. By
taking an adequately sampled set of one-dimensional
data, a two-dimensional map of the x-tray absorption
coefficient can be reconstructed, usually by digital
means.

We propose to use the Radon transform from a
different perspective. I[nstead of having one-dimen-
sional projections inherent in the data collectiom,
we use the Radon transform to make two-dimensional
4ata susceptible to processing by fast one-digen-
sional devices. Several types of oune-dimensional
processors exist; the SAW filter is but one. Many
two-dimensional operations can be performed by

means of the Radon transform, e.g., spectral ana-
lysis, coavolution, and Fourier filtering. Such
operations can be performed digitally, of course,
but the process may be time-consuming and the pro-
cessor expensive. By operating on the one-dimen-
sional projection instead, it is possible that the
processor may be significantly faster and/or cheaper
than {ts digital counterpart. Consider Fourier
filtering of a two-dimensional image, for example.
Three steps are required: Fourier transformation,
filter multiplication, and inverse transformation.
This operation may be performed digitally, by coher-
ent optics, or with one-dimensional SAW f{lters by
means of the Radon transform. The inventi{on of the
fast Fourier transform (FFT) algorithm and the array
processor have dramatically speeded up digital Four-
ier transform calculations, but the process {s still
slow. A typical stand-aloane ainicomputer, the DEC
11/34, requires approximataly 10 minutes to Fourier
transform a 512 x 512 8-bit array. Adding an array
processor speeds this by an order of magnitude at
significantly increased cost. The Cray-l, one of the
fastest digital computers ever, still requires about
1 second to perform s two-dimensional Fourier
trsasform and is very expensive. Coherent optics
can perfora Fourier transforms easily, cheaply, and
at the speed of light, but the output is noisy, aand
there are still no fully satisfactory spatial light
nodulators to allow analysis of rapidly time-vary-
ing inputs. We propose to perform two-dimensional
Fourier transforms by operating on one-dimensional
projections with SAW chirp filters. The resulting
processor should be inexpensive relative to the dig-
ital system, but more importantly, it should be
fast: we envision operaction at video rates.

Theory

Mathematical analysis of the Radon transform
{s straightforward and has been treated in several
references (2,3); We shall touch briefly on the main
points relevant to the application at hand, ie.,
two-dimensional Fourier analysis and filtering.

A one-dimensional projection A(%,p) of a tuwo-
dimensional function f(r) taken along azimuth direc-
tion ? (relative to the x axis) is defined as

[~
A(e,P) = o
J l-m

dir £(e)8(p - tTon). e
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The one-dimensional delta function reduces the ares
integral to a line integral along a line at an angle
¢ to the x axis and at a distance p from the origin
(Figute 1). The set [A(9,p)] for all azimuth angles ¢
is the Radon transform of f(r).

By taking the one-dimensionsl Fourier transform
of a line-integral projection, an important rasult is
obtained:

F.(a(e,p)] 2 ACe,v)

- J dp exp(-2xivp) J[ d’c £(r)s(p - pa)

- J [ dir £f(r) exp(-2rifivyr) = F(r)l'- ’
J-- p-a\’

where capital letters denote Fourier trassforma of
the corresponding lower-case functions. This {s the
central-slice theorenm. In words, the one-~dimen-
sional Fourier transforma of a projection \‘(p)
yields one line through the origin of the two-dimen-
sional Fourier transform of the original function
£(r) (Figure 1).

Aiv-@)
Flgure | - Geometry of the Radon transform. (a)
Derivation of one projection i(%,p) by line integrals
aiong azimuth angle 9. (b) Central slice theorem:

the one-dimensional Fourier transform of a line-in-
tegral projection yields one line through the two-
dimensional Fourier transform of the original two-
dimensional function.

3y similar, though more involved reasoning, it
can be shown that the original function f(r) may be
reconstructed from the projection data by means of
the inverse Radon transform

v -
f(r) = }[ doJ[ [IN[ACo,v)] exp(2riveea) (3)
0 £2 )

Again in words, the original function f(r) may be
reconstructed from the projections [A(®,p)] by: (1)
taking the one-dimensional Fourier transform of
A(0,p); (2) multiplying by the one-dimensional filter
Jv| (v-filtering); (3) taking the inverse one-dimen-
sional Fourier transform; (4) smearing the function
back over the original projection direction (this
creates a two-dimensional function from the one-
dimensional function aad is called back precjection);
and (5) integrating over ¢ (suamation).

If we multiply the one-dimensional Fourier
transfora data A(e,v) by another filter functionm as
well, the reconstructed function {s a Fourier-fil-
tered versiom of f(r).

Other expressions (and hence other procedures
for taking the inverse Radon transform exist and are
given in Reference 3.

In addition, it can be shown that by convolving
line-integral projections from two two-dimensional
images, and reconstructing by the procadure of Eq.
(3), the resulting two-dimensional image {s the con-
volution of the two input images.

Experiment

We constructed a systeam using the Radon trans-
form to perform two-dimensional spectral analysis
using SAW chirp filters. The apparatus is dia-
grammed in Figure 3. The Radon transform of the
{nput transpsrency is derived by scanning {t with s
line of HeNe laser light. The light transmitted
through the tranaparency is collected on a photo-
nultipliier tube (PMT). At one instant of time, the
output of the PMT {s proportional to the line integ-
ral of the intensity tramsmission of the transpar-
ency along the line of light. By scanning the line
perpendicular to itself, the time signal from the
PMT is proportional to the line-integral projection
along one azimuth Rotating the direction of scan
allovs derivation of the complete set of line-inte-
gral projections--the Radon transform. For obvious
reasons, this device is called a flying-line scanner
(FLS).

Recalling the central-siice theorem, we know
that the one-dimensional Fourier transform of one
projection ylelds one line through the two-dimen-
sional transform of the original function. By using
SAW filters {n the chirp Fourier transform algorithm
(4,5,6), the Fourier transform of each projection is
taken as the projection data are derived. Ve used
SAW dispersive filters for the chirps (Andersen Labs
models DS-120~10-20-251A and -232A). The time
dispersion of each is 20 us and the bdandwidth i{s 10
MHz. The time-bandwidth product (TBW) of the entire
system is only 50, but filters exist that could
boost this to 1000 or more.

in this demonstration, only the modulus of the
Fourier transform is computed, but we plan to util-
ize a rthird chirp fi{lter to perform the post-multi-
plication and derive the phase information.
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Figure 2 - Diagram of a tvo-dimensional spectrum
analyzer using SAW devices. The projections {A(9,p)}
are derived by the flying-line scanner. The one-
dimensional PFourier transforms of the projections
are produced by the SAW chirp filters. The Fourier
transform signal wmodulates the CRT trace. The
proper azimuth for display is selected by the image
rotator.

To complete the two-dimensional spectral ana-
lysis, it is necessary to display the transforms of
the projections at the proper orientations. After
detection and amplification, the transform of the
projection is applied to the z axis of a CRT whose
trace {s imaged on a photographic fllm. As the
azimuth of scan of the FLS is rotated, the image of
the CRT trace is rotated at the same rate, building
up the two-dimensional Fourier spactrum modulus om
the film. A result from this experiment {s shown ian
Figure 3. The input transparency consisted of three
gratings oriented at various angles: two fine
crossed gratings ovarlaid with a- section of coarse
grating. In the Fourier transform built up from the
projection data, the fundamental frequency of the
fine gratings and several orders of the coarse grat-
ing are visible. This spectrum vas built up slowly,
but by rapid rotation of the scan direction, ve
expect to perform two-dimensionsl spectral amalysis
at video rates (30 frames/s) or faster.

figure 3 - Results of two-dimensional spectral ana-
lysis using SAW devices.

fa) loput transparency consisting of three gratings.
(b) Two-dimensional spectrum, showing the fundamen-
tal order of the fine gratings and several orders of
the coarser grating.

Extending this system to allow complete Four-
ier filtering is straightforward and {s dilagrammed
in Figure 4., The Fourier transforms of the projec-
tion data are multiplied by a filter function, which
can be clocked out of ROM or produced by a fumction
generator. The filtered transforms are then applied
to an inverse Radon. transformer using the procedure
of Eq. (3). The |[v|-filter multiplication is to be
done using a custom SAW filter that is presently
being constructed in the University of Arizona
Microelectronics Laboratory. The inverse one-dimen-
sional Pourier transformation will be done by measns
of the chirp-transform algorithm and the output
applied to the z axis of a CRT. To perform the
back-projection (smearing), s cylindrical lens s
used to collimate the image i{n one dimension. The
integration over azimuth angle {s carried out as
before by rotating the image on the recording film.
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Figure 4 - Block diagram of a twoe-dimensional

system to do Fourier filtering. The signal i{s fil-
tered in the frequency domain and transformed back
to the space domain by the SAW chirp-transform
algoriths. The cylindrical lens performs the back-
projection (creatss a two-dimensional function out
of a one-dimensfomal functiom), and the proper azim-
uth i3 selected by the {mage rotator.

As mentioned previously, another operation sus-
ceptible to Radon transform analysis is the convolu-
tion of two two-dimensional functions. The neces-
sary apparatus {s diagrammed in Flgure 5. Both
inputs may be projection data from flying-line
scanners, but it is often useful to couvolve a two-
dimensiona! function with a stored filter function.
This function may be stoved in ROM, clocked out to a
fast D/A converter, and used to modulate a carrier.
The resulting signal is applied to one input >f a
SAW convolver. The projection data froam the FLS
modulate the carrier and are applied to the sther
input of the convolver. The filter function may be
varied with azimuth angle by clocking a different
fuoction out of ROM for each azimuth.

Reconstruction of the :wo-dimensional convolu-
tion also follows the procedure of Eq. (3. The
function is ,v|-filtered in the custom S5AW device,
demodulated, and biased up :o allow Jdisplay of bdipo-
lar output. This signa! modulates the IRT and is
back-projected and integrated over the azimuth as
before.
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Figure 5 - Block diagram of a system to perform
two-dimensional convolution with a SAW coavolver.
The convolution may be performed between two two-
dimensional 1inputs or between a twvo-dimensiomal
input and a stored filter fuanction. The SAW con-
volver output {s |v|-filtered by a custom SAW
filter.

Extemsion to Three-Dimensional Data

The time-consuming nature of three-dimensional
dats processing is even more extreme than for two-
dimensional data. Performing a (512)° FPT on a min-
icomputer with array processor and fast disk amemory
may take two days or more. By applying the princi-
ples of the Radon transform, we expect to speed up
the computation considerably.

In the three-dimensional case, the Radon trans-
form consists of the complete set of one~dimen-
sional integrals taken over planes of the thrae-
dimensional function. The three-dimensional cen-
tral-slice theorem states that the one-dimensional
Fourier transform of a planar projection yields one
line through the three-dimensional Fourier transform
of the three-dimensional functiom (3).

AsS an example, consider three-dimensional spec-
tral analysis of a function stored as frames of a
movie film (512 images, each 512 x 512 pixels, say).
de can use SAW chirp filters to compute the three-
dimensional Fourier transform. A block diagram is
shown in Figure 6. The dacta maaipulation {s consid-
erably more complicated thamn the two-dimensional
case, since the Radon transform projections are now
parameterized by two angles. But by using a digital
video frame store and a flying-line scanner, we can
build up the entire Radon transform, sampled at 512
azimuth angles, with 512 passes of the movie film.
The digital frame store is then read out through a
fast D/A to the SAW chirp-transformer. The projec-
tion transforms modulate the CRT as before, and are
imaged onto film. We build up the 512 frames of the
transform one at a time by selecting only that part
of the projection transform relevant to the frame
at hand. After reading out the video frame store
512 times, the complete three-dimensional transform
is bduilet up. With present video storage technology,

the operation (s envisioned to rtake 17 seconds per
frame, or less than 4 hours for the complete sert.
This is an improvement of an order of magnitude
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Figure 6 - Block diagram of a three-dimensional
Spectrum analyzer.

over the digital computer example above. The appli-
cation of three-dimensional processing (s discussed
further in Reference 7.

Conclusions

We have demonstrated the ability of one-dimen-~
sional processing devices, such as SAW filters, to
perform certain two-dimensional processing opera-
tions by means of the Radon transform. It is anti-
cipated that this will allow these operations to be
performed much more rapidly than is now possible
with digital techniques.

We would like to thank Dr. Paul Carr of Rome
Air Development Center, Hanscom Field, Massachu-
satts, for the loan of the SAW correlator. This
research was spounsored by the Air Force Office of
Scientific Research, contract number AFOSR-82-0249.
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Two-dimensional Radon-Fourier transformer

i Anthony J. Ticknor Abstract. The well-known central-slice, or projection-slice, theorem states that
Roger L. Easton the Radon transform can be used to reduce a two-dimensional Fourier trans-

Harrison H. Barrett
Ogptical Sciences Center

form to a series of one-dimensional Fourier transforms. In this paper we
describe a practical system for implementing this theorem. The Radon trans-

University of Arizona form is carried out with a rotating prism and a flying-line scanner, while the

Tucson, Arizona 85721 one-dimensional Fourier transforms are performed with surface acoustic wave
o filters. Both real and imaginary parts of the compiex Fourier transform can be
obtained. A method of displaying the two-dimensional Fourier transforms is
described, and representative transforms are shown. Application of this
approach to Labeyrie speckle interferometry is demonstrated.

Subject terms: optical computing; Radon transform; Fourier transform. speckle
interferometry.
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1. INTRODUCTION

The two-dimensional Radon transform reduces a 2-D functionto a
series of 1-D functions by integrating over a series of lines. Although
this transform is best known in connection with image reconstruc-
uon from projections, as in medical computed tomography, it is also
useful in general signal-processing or image-processing applications.
Many operations that can be performed on a 2-D function can also
be done by performing 1-D operations on the projections. Recent
work has demonstrated the usefulness of this approach in calculating
Founer transforms - and Wigner distribution functions,’ as well as
in pattern recognition,** image filtering,*’ and bandwidth
compression.?

That these operations are possible in the 1-D Radon domain isa
consequence of the celebrated central-slice, or projection-slice,
theorem. This theorem states that if a 1-D projection of a 2-D
function is formed by integrating over a set of parallel lines, the 1-D
Fourier transform of the projection is one line through the 2-D
Fourier transform of the function itseif (see Fig. 1). This line passes
through the origin of the 2-D Fourier space (hence the term central
slice). By varying the orientation of the lines of integration, the whole
2-D Fourier space can be mapped out in a polar format.

In this paper we describe in detail a practical system for perform-
ing 2-D Fourier transforms in the Radon domain. Special attention
is given to the electronics for dispiaying the 2-D Fourier transforms,
and several representative transforms are shown. As an illustration
of this approach, we demonstrate that the Radon transform can be
used to process data from astronomical speckle interferometry.
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2. PRODUCING AND TRANSFORMING THE ONE-
DIMENSIONAL DATA

In this section we describe the subsystems for producing the Radon
transform and the 1-D Fourier transforms. Since these subsystems
have been described previously,' =} only a brief review is given here.

Assume that the 2-D function to be transformed is in the form of a
photographic transparency or print. The projection data A 4(p) are
derived from the input function f(x,y) by scanning a line of light
perpendicular to itself across the function at an angle & (see Fig. 1).
The perpendicular distance of the line from the origin is p, and the
line is uniquely specified by the vaniables pand ¢. The light transmit-
ted or reflected by the object is detected by a photomultiplier tube
(PMT). The signal out of the PMT is then proportional to the line
integral of the object transmittance or reflectance along the line
(p.®). As the line is scanned by means of an acousto-optic deflector.
the variable p changes, and one scan produces one projection A ,{p).
A rotating prism in the system changes the onentation of the line,
which is always scanned perpendicular to itself, and provides other
projections in the data set. In this way the entire data set, sampled in
¢ but continuous in p, can be formed. This system 1s refe 4 toasa
flying-line scanner.' 3

The 1-D Fourier transforms .\ ,(v) are formed by a surface
acoustic wave (SAW) chirp transformer?.9 in which the input signal
(the projection) is premultiplied by a chirp produced by impulsing a
SAW device. The resulting signal is filtered (convolved) by a second
SAW chirp filter in which the chirp rate is equal and opposite 1o that
of the premultiply signal. The signal out of this second filter 1s
coherently detected with a third chirp as a reference. In-phase and
quadrature outputs of the coherent detector give, respectively, the
real and imaginary parts of the complex Founer transtorm. If oniv
the modulus of the transform is desired. the third chirp can be
omitted and incoherent detection used.

By the central-slice theorem, Ag(p)1s also the 2-D Fourer trans-
form of f(x,y) evaluated at polar coordinates (p.®) in the 2-D
Fourier space, where p =|»].

3. DISPLAYING THE TRANSFORM

A simple way to display the 1-D Fourier transforms is in the so-called
“sinogram” format, in which the radial frequency variable p is plot-
ted horizontally and the azimuthal variabie ¢ is plotted vertically.




TWO-DIMENSIONAL RADON-FOURIER TRANSFORMER

This representation is certainly legitimate and useful in some applica-
tions.! but it is often desirable to present the data in polar format.
This not only makes the transform more recognizable to someone
not familiar with sinograms but aiso presents the data in a form that
can be further processed in cascaded systems. A system to accom-
plish this polar display has been designed, built, and operated and is
described in this section.

For now, assume that only the modulus of the 2-D transform s to
be displayed. The rf signal from the SAW chirp transformer is
detected incoherently, forming a signal proportional to the squared
magnitude of the Fourier transform, which is then used to intensity-
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Fig. 1. (s) Geometry of the Radon transform and (b} illustration of the
centrai- slice theorem.

modulate a spot on a CRT display that is being scanned in a polar
raster (Fig. 2). The polar angle of the raster is the same as the angle ¢
that specifies the orientation of the line of light in the flying-line
scanner. while the radial variable on the raster corresponds to the
frequency p. The time-averaged intensity on the screen represents the
2-D Fourier transform in a direct format and is equivalent to the
intensity distribution in the Fourier plane of a coherent optical
transformer with the same input function.

To maintain synchronism between the polar raster and the flying-
line scanner, a stepper motor is used to control the rotation of the
prism in the scanner. Each step of the stepper motor changes the
orientation of the scanning line by m/ 100 rad. A free-running circuit
operates the stepper motor from about |, 2 to 1000 steps per second.
Each time a step occurs, a short transistor-transistor logic (TTL)
pulse is sent to a Commodore 64 computer. Upon receiving this
pulse, the computer updates an index register to indicate the new
angle, sends bytes representing the sine and cosine of the new angle to
two digital-to-analog converters, and finally sends a short TTL pulse
to a third output port to signal the rest of the system to generate a new
line of data.

The start-of-line pulse from the computer starts a scan in the
flying-line scanner, triggers the impuise generator for the premultiply
chirp, and triggers a delay circuit whose output after the proper delay
is a 30 us puise used to control the display. The delay is adjusted such
that the Founer transform data are centered within the 30 us pulse.
During this pulse, a bipolar ramp function is generated, passing
through zero at the same time the zero-frequency component of the
Founer transform is available. This ramp function is multiplied by
the sine and cosine values. and the results of these multiplications are
used to control the x and y deflections of a spot on a CRT display.
This causes the spot to travel across the screen at a constant speed at
anangle equal to the scan angle ¢, reaching the center of the screen at
a time corresponding to the zero-frequency output time of the
Fourier transformer.

If the signal coming out of the SAW transformer were simply
detected and used to intensity-modulate the CRT, the screen would
display the desired output except for one problem. As the entire
output is built up, the radial scanning pattern fills the space near the
center much more densely than near the edges. The resulting tume-
averaged intensty distribution would appear as F(p) times | p.
where p is the 2-D frequency vector, p is its magnitude. and F(p) is
the 2-D Founer transform of the input function f(x.y). (Recall that p
is also the magnitude of the |-D frequency », but v can be bipolar,
while p is always nonnegative.) In order to eliminate the | p weight-
ing, it is necessary to multiply the signal before detection bvivi This
isaccomplished in the following manner. The ramp functiondriving
the mulitipliers is used as the input to an absolute-value amplifier.

Fig. 2. Layout of the Redon-Fourier transformer. The acousto-optic deflector in the flying-line scanner is not shown but is to the left of the rotating prism.
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Fig. 3. 2-D Fourier transform of 8 square-wave grating in 8 small circular
sperture.

Fig. 4. 2-D Fourier transform of two crossed gratings making an angle of
spproximately 90°.

The output of this amplifier isa V-shaped function that is the desired
muitiplier.

Because the signal-to-noise ratio is generally decreasing with
increasing frequency, it is also desirable to roll off or apodize the V
function at higher frequencies. This is easily accomplished by current-
limiting the output of the V generator. The signal resuiting from
multiplying the output of the convolving filter by the apodized V
function is square-law detected and used to intensity-modulate the
spoton the CRT. The resulting display from one scanisa linein 2-D
Founer space. filtered by pand the apodizing function. As all angles
are traced out. an entire disk of Fourier space is built up on the
screen.

It 1s straightforward to extend this system to a CRT display of
complex Fourier transforms. The coherent detector in the chirp
transformer provides bipolar signals proportional to the real and
imaginary parts of the compiex transform. These signals can be
separated further into four nonnegative signals, namety, the positive-
real, negative-real, positive-imaginary, and negative-imaginary
components, each of which can be used to intensity-modulatea CRT
display. Either four separate CRTs can be used. or a single display
can be used sequentially for the four components. Alternatively,
analog electronic modules are available to convert the real and
imaginary parts to modulus and phase. which can be displayed with
the system described above.

4. RESULTS

Several examples of 2-D Founer transforms produced on the
Radon-Founer transformer are shown in Figs. 3 through 7.

Figure 3 shows the transform of a square-wave grating witha dutv
cycle of about 0.7; the = | and £ 2 orders are seen. The aperture of the
gratingis a small circulariris, and the rings of the Airy disk are visible
in the =1 orders. The effects of the angular sampling can be seen in
the =2 orders since only four or five sweeps of the flying-line scanner
intersect these orders

Figure 4 shows the transform of two overlapping orthogonal

084 / OPTICAL ENGINEERING / January/February 1985 / Vol. 24 No. 1

Fig. 8. 2-D Fourier transform of two crossed gratings making an angie of
spproximately 45°.

Fig. 8. 2-0 Fourisr transtorm ot a computer-generated hologram with an
annuisr impuise response.

Fig. 7. 2-D Fourier transform ot 8 double pinhole.

square-wave gratings. Agan. the duty cvcie of the gratings 1s about
0 7. The product orders resulting from the convoiution of the two
individual grating spectra are clearly seen. Figure 515 similar except
that the angle between the gratings 15 approximately 45°

Figure 6 shows the transtform ot a computer-generated hoiogram
that has an annular impulse response

Figure 7.1s the transform of a double pinhole The two notches are
due to limited dynamic range in the rf mixers, a problem that can be
solved with better mixers.

With the SAW filters we actually used. the time-bandwidth pro-
ductinthe [-Dtranstorms was only about 50, so the results shownan
these figures have relatively low resolution, containing roughly 2000
resolvable spots However, thisis by no means a fundamental hmita-
tion; SAW filters are commercially avatlable that will provide 6000
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' Fig. 8. Speckie interferogram of a simulated binary star. The originai
. specikie patterns were produced on a computer, but this figure was pro-
' duced by the Redon-Fourier transformer.
[ J

spots in a |1-D Founer transform. or almost 30 mullion in a 2-D
transform.
For our expenments, the time required to produce a complete
2-D Founer transform was about 0.3 5, but again this is not a
fundamental imitation; rather it 1s a limitation on how rapidly the
¥ pnsmin the flying-line scanner could be rotated. It is easily possible
to rotate a prism at 450 rpm, which would yield 2-D transforms at
video rates, and even | ms per transform appears feasible.

5. SPECKLE INTERFEROMETRY

Astronomical speckle interferometry is an ingenious technique
invented by Labeyne to obtain diffraction-limtited resolution from a
@  telescope in spite of phase perturbations by the atmosphere.'? [n this
technique. a senes of photographic exposures is made, with each
exposure time being short compared to the saintillatton time of the
atmosphere Each image 1s Founer transformed. either digually or
optically, the sum of the squared moduli of the Fourier transforms s
accumulated. One final Founer transform then vields the autocorre-
lation of the object with diffraction-limited resolution.
[ ) Since this method involves a large number of Founer transtorms,
it1s natural to consider the use of the Radon transform to reduce the
2-D Founer transforms to 1-D. Indeed. in some infrared applica-
tions. 1-D projections of speckie patterns are observed directly by use
ot a scanmng siit in the image plane.'! ¢
To demonstrate the use of our Radon-Founer transformer in
speckle interferometry. we simuiated a senies of 20 speckle patterns
# C  onadwital computer. Each speckle pattern consisted of 50 pairs of

Chak 2um e Ban e g

ellipses ot random size and ellipticity but with constant spacing
hetween members of the same pair The resulting configuration of
ellipses was intended to represent the speckle pattern that would be
produced by a binary star. The 20 speckle patterns were photo-
graphed on 35 mm transparency tilm. and atter development the tilm
strip was pulled through the nput plane of the Radoun-Fourner

t transtormer. The modulus ot the 2-D Fourer transtorm was dis-
plaved on a CRT as described above. and a camera with an open
shutter was used to accumulate the sum of the Fournier moduli. The
resultingimage, Fig. 3. clearlv shows the tringe pattern charactenistic
ot a double star Oneturther 2-D Fourer transtorm. also carried out
with the Radon-Fourier transtormer, vielded the autocorrelation ot
the doubie star. as shown in Fig. 9

A B T I A S S AT AT A I AR S A RS A S Sl T Y
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TWO-DIMENSIONAL RADON-FOURIER TRANSFORMER

Fig. 9. Fourier transform of Fig. 8, which is the autocorrelation function
of the simulated binary star.

6. CONCLLUSIONS

We have shown that the Radon transform is a convenient and rapid
vehicle for the calculation of 2-D Fourier transforms. The parucular
system described here. which 1s based on a flying-line scannerand a
SAW chirp Founer transformer, has a number of advantages over
coherent optical Fourner transformers. [t does not require that the
function to be transformed be in the form of a transparency: it works
also when the function is recorded as a photographic print or 1s a
natural reflecting scene. Although 1t uses a laser as a convenient
source, its operation does not depend on the coherence of the source.
Furthermore. the full complex Founer transform s available. some-
thing thats very difficult to obtain with coherent optical techmigues.
The system is also extremely fast. With presently available SAW
filters, a system similar to the one described here could be built that
would produce a 500 X500 (500 points across the diameter of the
Founer plane and 500 angles in the range 0 to ) 2-D transform in
| 30 s and a 5000 X 5000 transtorm in a few seconds.
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Radon transform and bandwidth compression
Warren E. Smith and Harrison H. Barrett .
Optical Sciences Center, University of Arizona, Tucson. Arizona 85721 (
o
Received April 11, 1983 '._'
A bandwidth-compression scheme for two-dimensional data is presented that incorporates the Radon transform. s
There are three advantages to this approach: only one-dimensional operations are required, the dynamic range
requirements of the compression are reduced by a filtering step associated with the inverse Radon transform, and
the technique is readily adaptive to the data structure. A rectilinear object is compressed to demonstrate the algo- :
rithm. i
Introduction (1) The entire coding process can be performed with i
. ) state-of-the-art one-dimensional devices. .
The Radon transform~3 is best known as the theoretical (2) The large dynamic range typical of the compo- .
backbone of computed tomography, the technique that pents of the Fourier transform is significantly reduced o4
pro_duces cross-sectxgnal maps of x-ray attenuation. by the filtering operation. .
This transform entails projecting a two-dimensional (3) One line through the center of the two-dimen- s
slice of an object’s x-ray attenuation coefficient along sional Fourier transform can be examined at a time and 2
a given direction in the plane of the slice, forming a adaptively compressed.
one-dimensional data set for each projection direction. "
Thus the two spatial dimensions of the slice are trans- Th "
formed into one spatial and one angular dimension in eory -
Radon space. This reduction of spatial dimension can Radon Transform .
be used to reduce two-dimensional operations on a f -
two-dimensional object to a set of one-dimensional The Radon transform and its inverse?3 are central to
operations on one-dimensional objects, with each the compression technique. Given a two-dimensional .
member of the set corresponding to a projection angle. function f(r), where r is the spatial-position vector (x, .
In particular, as a consequence of the central-slice y), the set of one-dimensional projections of f along a .
theorem, the Radon transform makes the two-dimen- given direction ¢ can be written as .
sional Fourier transform of a two-dimensional function . K
readily accessible without two-dimensional operations’ Ao(p) = f f f(r)é(p — r- m)d?r, (1) .
actually having to be performed. Thus the motivation -

exists for exploring the use of the Radon transform in

here (p = r - n) i -di ional Dirac delta
areas outside clinical tomography.45 A particularly where d(p = r - n) is a one-dimension jrac oe

-

direct application is to bandwidth compression.®
Compressing the data necessary to represent an
image (with minimum image degradation) is important
for two reasons: storage requirements are reduced, and
transmission bandwidth requirements are reduced. If
we define the data set to be an image of N X N pixels

function restricting the integration of f to a line (with
normal n) located a distance p from the origin. Thus,
for each projection direction ¢, a one-dimensional
function A4(p) is constructed. The set of all \y(p) (==
< p < =»,0 £ ¢ < 7) constitutes the Radon transform
of f(x, y).

» e
P

-

- e

Performing the one-dimensional Fourier transform
on Eq. (1) and using the sifting property of the delta
function results in

’

with each pixel corresponding to M gray levels, com-
pression can be imposed in the spatial domain or in a
transform domain. Spatial compression consists of
reducing (quantizing) the number of gray levels per
pixel and/or reducing the number of pixels in the image

0

-

Ny Ay Ny

Ay(v) = f " f(r) expl=27ivr - 0)d?r = F(p)|ymrn,

[

(i.e., reducing the radiometric and spatial redundancy,
respectively). Transform compression consists of
transforming the image (e.g., Fourier, Hadamard, Haar)
and then quantizing and/or eliminating the coefficients
of the transformed image.” To reconstruct the image,
gle‘ inverse transform of the compressed coefficients is
en.

The Radon transform lends itself to Fourier-trans-

form compression for three reasons:

0146-9592/83/070395-0381.00/0

------
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(2)

where v is the frequency-variable conjugate to p, p is the
frequency-variable conjugate to r, and F(p) is the two-
dimensional Fourier transform of f(r), evaluated along
the line p = nv, where n in the frequency domain is
parallel to n in the spatial domain. This is the cen-
tral-slice theorem.

By writing f(r) in terms of its inverse Fourier trans-
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form in polar-coordinate form and using Eq. (2), we can
write the inverse Radon transform as

f(r) = j:)'ddb [j‘_: duf|v| Ay(¥)} exp(27rivp) o

(3)

If one looks at the bracketed term in Eq. (3), the fol-
lowing operations are evident: The one-dimensional
Fourier transform of each Radon projection A,(v) is
multiplied by the frequency filter |»{; then the inverse
one-dimensional Fourier transform is applied to this
product and evaluated at p = n - r. This is the
backprojection step. The integral over ¢ is the sum-
mation of the backprojections to produce f(r).

Compression Scheme

From the central-slice theorem of Eq. (2), access to a line
passing through the center of the two-dimensional
Fourier transform is immediately available by the
one-dimensional Fourier transform of a given Radon
projection. This suggests that an adaptive trans-
form-compression scheme can be applied to one line of
the two-dimensional Fourier transform at a time. In
fact, the compression step can be advantageously ap-
plied to the filtered line, i.e., |»| A4(v) of Eq. (3). The
filtered and compressed line is then stored or trans-
mitted. To reconstruct the image, the inverse Fourier
transform is applied to each previously compressed line,
the result is backprojected, and the backprojections are
summed to produce the final image.

The compression is accomplished by thresholding
and quantizing the components of each Fourier line.
Because the projection A(p) is real, its Fourier trans-
form A,(») is hermitian (i.e., the real part is even; the
imaginary part is odd), so that only the positive half (v
> 0) of each Fourier line need be transmitted or stored.
The thresholding that we apply is to truncate each line
past some cutoff frequency C,, which is variable from
line to line (i.e., depends on ¢). The value of C, is found

from
f “lawldr = s, (—SL)T @)
V] Somu
where
S, = j; " 1o Ap)|dv, (5)

S omax i8 the largest value of S, for0 < ¢ < x,and T is
a parameter that controls the degree of truncation.
Note that the line corresponding to S;ma: is never
truncated and that, as T — 0, C, — « for all lines (limit
of no truncation). This method of choosing C, is not,
of ggurse, fundamental; other algorithms may be de-
rived.

After truncating the line, we quantize the components
by dividing the full dynamic range (positive to negative)
specific to the line into a series of uniform, discrete
ranges. Actually, two dynamic ranges exist, one each
for the real and imaginary parts. The component that
falls within a particular range is assigned the constant
value for that range.

The advantages of the Radon approach are now dis-
cussed.

From an implementation point of view, hardware
devices for carrying out one-dimensional operations are
well developed. The operations for each projection at
the compression end involve a one-dimensional Fourier
transform, multiplication by a linear filter, thresholding,
quantiging, and coding for transmission or storage. At
the receiving end, only a one-dimensional inverse
Fourier transform is required, followed by the
backprojection operation.

The dynamic range of a line through the center of a
two-dimensional Fourier transform is large. To
quantize such a range efficiently, a variable quantizer
would be required. Multiplying by the || filter, how-
ever, reduces the dynamic range of the line (near |»| =
0, where the components are usually largest), simpli-
fying the requirements of the quantizer.

The third advantage is related to the image-depen-
dent adaptability of the compression scheme. An
image with relatively sharp, straight edges, oriented in
particular directions, will exhibit a transform with the
energy distributed along conjugate directions, de-
pending on the symmetry of the original image. Be-
cause the Radon transform handles one Fourier-
transform line at a time, each filtered line can be ad-
aptively compressed to take advantage of the structure
in the two-dimensional Fourier-transform plane.

Fig. 1. (a) Reconstruction from Radon projections without
thresholding and nominal 8-bit quantization (8 bits/pixel).
(b) truncation of 48% of components with 3-bit quantization
(1.6 bits/pixel), (c) truncation of 66% of components with 3-bit
quantization (1.1 bits/pixel), (d) truncation of 48% of com-
ponents with two-bit quantization (1.1 bits/pixel).
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Fig. 2. Truncated and quantized Fourier components of Fig.
1(d).

Illustrative Example

To demonstrate the method, the object illustrated in
Fig. 1(a) is compressed. The region to be compressed
is a circle with a radius of 64 pixels, yielding an area of
12,868 pixels. The rectilinear nature of the figure is
useful in demonstrating the variable compression with
projection angle.

The object is viewed by a TV camera through an
image rotator. The one-dimensional Radon projection
As(p) of the object is obtained (at the angle ¢ defined
by the image rotator) by summing the camera output
along a horizontal raster line, giving the digital equiv-
alent of the line integral of the object along the line.
This summation is performed for each of 128 raster lines
to yield a 128-element projection. We then rotate the
image rotator through a small angle (1.8 deg) and find
the next projection, until a total of 100 projections, each
with 128 elements, has been taken.

Each projection is Fourier transformed, yielding a line
through the center of the two-dimensional transform
of the original object. This line is then filtered [mul-
tiplied by |»|; see Eq. (3)] and compressed by thresh-
olding and uniformly quantizing the components, as
described above. The object is reconstructed by taking
the one-dimensional inverse Fourier transform of the
filtered and compressed line, backprojecting, and
summing over all projection angles. Figure 1(a) illus-
trates the reconstruction from the Radon-transformed
original object without thresholding or quantizing to
provide a control case.

The measure of the compression in bits per pixel (the
bit rate) is determined by counting the total number of
bits required to store or transmit the image (including
any overhead) divided by the number of pixels in the
image. Figure 1(a) has approximately 8.0 bits/pixel
because there are 100 angles times 128 Fourier compo-
nents per angle, times 8 bits per Fourier component,
divided by 12,868 pizxels.

Three different compressions of Fig. 1(a) are now

demonstrated. Figure 1(b) represents thresholding
with T = 0.3 and quantization of the Fourier compo-
nent’s full range to eight gray levels (3 bits). The
thresholding eliminates 48% of the Fourier components.
The overall bit rate is 1.6 bits/pixel. Figure 1(c)has T
= (1.6, eliminating 66% of the components, again with
eight gray levels per component, giving a bit rate of 1.1
bits/pixel. To investigate a coarser quantization, Fig.
1(d) represents the same thresholding as in Fig. 1(b) but
with four gray levels per component, giving a bit rate of
1.1 bits/pixel. Figure 2 is a representation of the
truncated and quantized components that produce Fig.
1(d). The adaptive nature of the compression is evident
for this type of object. Note that an overhead of ap-
proximately 0.1 bit/pixel is incurred independently of
the amount of compression, to keep track of the number
of components truncated per line and the scale factors
relating the dynamic range (both real and imaginary)
of each line to the maximum dynamic range. This
overhead is included in the results.

Summary

We have shown that the Radon transform can be used
to advantage in bandwidth compression for several
reasons. First, a line passing through the center of the
two-dimensional Fourier transform of the object is at-
tainable by a one-dimensional operation that can be
carried out by existing fast devices. Second, the dy-
namic range of this line is reduced in a filtering opera-
tion required by the inverse Radon transform. This
reduction enhances compression performance (i.e.,
quantization error is reduced). Finally, each line in
Fourier space is obtained independently, so the com-
pression can be adapted to the amount of structure in
that line. The technique was demonstrated on a rec-
tilinear object, and a bit rate of 1.6 bits/pixel was
achieved with good fidelity.

This research was sponsored by the U.S. Air Force
Office of Scientific Research under grant AFOSR-82-
0249.
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